
NOTE ON MATH2060B: ELEMENTARY ANALYSIS II (2020-21)

CHI-WAI LEUNG

1. Differentiation

Throughout this section, let I be an open interval (not necessarily bounded) and let f be a real-
valued function defined on I.

Definition 1.1. Let c ∈ I. We say that f is differentiable at c if the following limit exists:

lim
x→c

f(x)− f(c)

x− c
.

In this case, we write f ′(c) for the above limit and we call it the derivative of f at c. We say that if
f is differentiable on I if f ′(x) exists for every point x in I.

Proposition 1.2. Let c ∈ I. Then f ′(c) exists if and only if there is a function ϕ defined on I such
that the function ϕ is continuous at c and

f(x)− f(c) = ϕ(x)(x− c)
for all x ∈ I.
In this case, ϕ(c) = f ′(c).

Proof. Assume that f ′(c) exists. Define a function ϕ : I → R by

ϕ(x) =

{
f(x)−f(c)

x−c if x 6= c;

f ′(c) if x = c.

Clearly, we have f(x) − f(c) = ϕ(x)(x − c) for all x ∈ I. We want to show that the function ϕ is
continuous at c. In fact, let ε > 0, by the definition of the limit of a function, there is δ > 0 such that

|f ′(c)− f(x)− f(c)

x− c
| < ε

whenever x ∈ I with 0 < |x−c| < δ. Therefore, we have |f ′(c)−ϕ(x)| < ε as x ∈ I with 0 < |x−c| < δ.
Since ϕ(c) = f ′(c), we have |f ′(c) − ϕ(x)| < ε as x ∈ I with |x − c| < δ, hence the function ϕ is
continuous at c as desired.
The converse is clear since ϕ(x) = f(x)−f(c)

x−c if x 6= c. The proof is complete. �

Proposition 1.3. Using the notation as above, if f is differentiable at c, then f is continuous at c.

Proof. By using Proposition 1.2, if f ′(c) exists, then there is a function ϕ defined on I such that the
function ϕ is continuous at c and we have f(x) − f(c) = ϕ(x)(x − c) for all x ∈ I. This implies that
limx→c f(x) = f(c), so f is continuous at c as desired. �

Remark 1.4. In general, the converse of Proposition 1.3 does not hold, for example, the function
f(x) := |x| is a continuous function on R but f ′(0) does not exist.
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Proposition 1.5. Let f and g be the functions defined on I. Assume that f and g both are differen-
tiable at c ∈ I. We have the following assertions.

(i) (f + g)′(c) exists and (f + g)′(c) = f ′(c) + g′(c).
(ii) The product (f · g)′(c) exists and (f · g)′(c) = f ′(c)g(c) + f(c)g′(c).

(iii) If g(c) 6= 0, then we have (fg )′(c) exists and (fg )′(c) = f ′(c)g(c)−f(c)g′(c)
g(c)2

.

Proof. Part (i) clearly follows from the definition of the limit of a function.
For showing Part (ii), note that we have

f(x)g(x)− f(c)g(c)

x− c
=
f(x)− f(c)

x− c
g(x) + f(c)

g(x)− g(c)

x− c
for all x ∈ I with x 6= c. From this, together with Proposition 1.3, Part (ii) follows.

For Part (iii), by using Part (ii), it suffices to show that (1g )′(c) = − g′(c)
g(c)2

. In fact, g′(c) exists, so g is

continuous at c. Since g(c) 6= 0, there is δ1 > 0 so that g(x) 6= 0 for all x ∈ I with |x− c| < δ1. Then
we have

1

x− c
(

1

g(x)
− 1

g(c)
) =

1

x− c
(
g(c)− g(x)

g(x)g(c)
)

for all x ∈ I with 0 < |x − c| < δ1. By taking x → c, we see that (1g )′(c) exists and (1g )′(c) = −g′(c)
g(c)2

.

The proof is complete. �

Proposition 1.6. (Chain Rule): Let f, g be functions defined on R. Let d = f(c) for some c ∈ R.
Suppose that f ′(c) and g′(d) exist. Then the derivative of composition (g◦f)′(c) exists and (g◦f)′(c) =
g′(d)f ′(c).

Proof. By using Proposition 1.2, we want to find a function ϕ : R→ R such that

g ◦ f(x)− g ◦ f(c) = ϕ(x)(x− c)
for all x ∈ R and the function ϕ(x) is continuous at c, and so (g ◦ f)′(c) = ϕ(c).
Let y = f(x). By using Proposition 1.2 again, there is a function and β(y) so that g(y) − g(d) =
β(y)(y − d) for all y ∈ R and β(y) is continuous at d. Similarly, there is a function α(x) we have
f(x)− f(c) = α(x)(x− c) for all x ∈ R and α(x) is continuous at c. These two equations imply that

g ◦ f(x)− g ◦ f(c) = β(f(x))(f(x)− f(c)) = β(f(x))α(x)(x− c)
for all x ∈ R. Let ϕ(x) := β(f(x)) · α(x) for x ∈ R. Since β(d) = g′(d) and α(c) = f ′(c), we see that
ϕ(c) = β(f(c))α(c) = g′(d)f ′(c). It remains to show that the function ϕ is continuous at c. In fact,
f ′(c) exists, so f is continuous at c, and hence the composition β ◦f(x) is continuous at c. In addition,
the function α is continuous at c. Therefore, the function ϕ := (β ◦ f) · α is continuous at c, and so
(g ◦ f)′(c) exists with (g ◦ f)′(c) = ϕ(c) = g′(d)f ′(c). The proof is complete. �

Proposition 1.7. Let I and J be open intervals. Let f be a strictly increasing function from I onto
J . Let d = f(c) for c ∈ I. Assume that f ′(c) exists and the inverse of f , write g := f−1, is continuous
at d. If f ′(c) 6= 0, then g′(d) exists and g′(d) = 1

f ′(c) .

Proof. Let y = f(x). Note that by using Proposition 1.2, there is a function F on I such that
f(x) − f(c) = F (x)(x − c) for all x ∈ I and F is continuous at c with F (c) = f ′(c) 6= 0. F is
continuous at c, so there are open intervals I1 and J1 such that c ∈ I1 ⊆ I and d ∈ f(I1) = J1,
moreover, F (x) 6= 0 for all x ∈ I1. Note that since f(x) − f(c) = F (x)(x − c), we have y − d =
f(g(y)) − f(g(c)) = F (g(y))(g(y) − g(d)) for all y ∈ J1. Since F (x) 6= 0 for all x ∈ I1, we have
g(y) − g(d) = F (g(y))−1(y − d) for all y ∈ J1. Note that the function F (g(y))−1 is continuous at d.
Thus, g′(d) exists and g′(d) = F (g(d))−1 = 1

f ′(c) as desired. �
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Definition 1.8. Let D be a non-empty subset of R and let g be a real-valued function defined on D.

(i) We say that g has an absolute maximum (resp. absolute minimum) at a point c ∈ D if
g(c) ≥ g(x) (resp. g(c) ≤ g(x)) for all x ∈ D.
In this case, c is called an absolute extreme point of g.

(ii) We say that g has a local maximum (resp. local minimum) at a point c ∈ D if there is r > 0
such that (c− r, c+ r) ⊆ D and g(c) ≥ g(x) (resp. g(c) ≤ g(x)) for all x ∈ (c− r, c+ r).
In this case, c is called a local extreme point of g.

Remark 1.9. Note that an absolute extreme point of a function g need not be a local extreme point,
for example if g(x) := x for x ∈ [0, 1], then g has an absolute maximum point at x = 1 of g but 1 is
not a local maximum point of g.

Proposition 1.10. Let I be an open interval and let f be a function on I. Assume that f has a local
extreme point at c ∈ I and f ′(c) exists. Then f ′(c) = 0.

Proof. Without lost the generality, we may assume that f has local minimum at c. Then there is r > 0
such that f(x) ≥ f(c) for x ∈ (c− r, c+ r) ⊆ I. Since f ′(c) exists, by using Proposition 1.2, there is a
function ϕ defined on I such that f(x)− f(c) = ϕ(x)(x− c) for all x ∈ I and ϕ is continuous at c with
ϕ(c) = f ′(c). Thus, we have ϕ(x)(x− c) ≥ 0 for all x ∈ (c− r, c+ r). From this we see that ϕ(x) ≥ 0
as x ∈ (c, c + r), similarly, ϕ(x) ≤ 0 as x ∈ (c − r, c). The function ϕ is continuous at c, so ϕ(c) = 0
and hence f ′(c) = ϕ(c) = 0 as desired. �

Proposition 1.11. Rolle’s Theorem: Let f : [a, b] → R be a continuous function. Assume that
f ′(x) exists for all x ∈ (a, b) and f(a) = f(b). Then there is a point c ∈ (a, b) such that f ′(c) = 0.

Proof. Recall a fact that every continuous function defined a compact attains absolute points, that
is, there are c1 and c2 such that f(c1) = minx∈[a,b] f(x) and f(c2) = maxx∈[a,b] f(x), hence, f(c1) ≤
f(x) ≤ f(c2) for all x ∈ [a, b]. If f(c1) = f(c2), then f(x) ≡ f(c1) = f(c2) for all x ∈ [a, b], so f ′(x) ≡ 0
for all x ∈ (a, b).
Otherwise, suppose that f(c1) < f(c2). Since f(a) = f(b), we have c1 ∈ (a, b) or c2 ∈ (a, b). We may
assume that c1 ∈ (a, b). Then x = c1 is a local minimum point of f . Therefore, f ′(c1) = 0 by using
Proposition 1.10. �

Theorem 1.12. Main Value Theorem: If f : [a, b] → R is a continuous function and is differen-
tiable on (a, b), then there is a point c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a).

Proof. Define a function ϕ : [a, b]→ R by

ϕ(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a)

for x ∈ [a, b]. Note that the function ϕ is continuous on [a, b] with ϕ(a) = ϕ(b) = 0, in addition, ϕ′(x)
exists for all x ∈ (a, b). The Rolle’s Theorem implies that there is a point c ∈ (a, b) such that

0 = ϕ′(c) = f ′(c)− f(b)− f(a)

b− a
.

The proof is complete. �

Corollary 1.13. Assume that f : [a, b] → R is a continuous function and is differentiable on (a, b).
If f ′ ≡ 0 on (a, b), then f is a constant function.
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Proof. Fix any point z ∈ (a, b). Let x ∈ (z, b]. By using the Mean Value Theorem, there is a point
c ∈ (z, x) such that f(x) − f(z) = f ′(c)(x − z). If f ′ ≡ 0 on (a, b), so f(x) = f(z) for all x ∈ [z, b].
Similarly, we have f(x) = f(z) for all x ∈ [a, z]. The proof is complete. �

Definition 1.14. We call a function f is a C1-function on I if f ′(x) exists and continuous on I. In

addition, we define the n-derivatives of f by f (n)(x) := f (n−1)(x) for n ≥ 2, provided it exists. In
this case, we say that f is a Cn-function on I. In particular, we call f a C∞-function (or smooth
function) if f is a Cn-function for all n = 1, 2....
For example, the exponential function expx is a very important example of smooth function on R.

Corollary 1.15. Inverse Mapping Theorem: Let f be a C1-function on an open interval I and
let c ∈ I. Assume that f ′(c) 6= 0. Then there is r > 0 such that the function f is a strictly monotone
function on (c− r, c+ r) ⊆ I. If we let J := f(c− r, c+ r)), then the inverse function g := f−1 : J →
(c− r, c+ r) is also a C1-function.

Proof. We may assume that f ′(c) > 0. f ′(x) is continuous on I, so there is r > 0 such that f ′(x) > 0
for all x ∈ (c− r, c+ r) ⊆ I. For any x1 and x2 in (c− r, , c+ r) with x1 < x2, by using the Mean Value
Theorem, we have f(x2) − f(x1) = f ′(v)(x2 − x1) for some v ∈ (x1, x2), and hence f(x2) > f(x1).
Therefore the restriction of f on (c− r, c+ r) is a strictly increasing function, thus, it is an injection.
Let J := f((c− r, c+ r)). Then J is an interval by the Immediate Value Theorem. Moreover, J is an
open interval because f is strictly increasing. Also, if we let g = f−1 on J , then g is continuous on
J due to the fact that every continuous bijection on a compact set is a homeomorphism. Therefore,
by Proposition 1.7, we see that g′(y) exists on J and g′(y) = 1

f ′(x) for y = f(x) and x ∈ (c− r, c+ r).

Therefore, g is a C1 function on J . The proof is complete. �

Proposition 1.16. Cauchy Mean Value Theorem: Let f, g : [a, b] → R be continuous functions
with g(a) 6= g(b). Assume that f, g are differentiable functions on (a, b) and g′(x) 6= 0 for all x ∈ (a, b).

Then there is a point c ∈ (a, b) such that f(b)−f(a)
g(b)−g(a) = f ′(c)

g′(c) .

Proof. Define a function ψ on [a, b] by ψ(x) = f(x)− f(a)− f(b)−f(a)
g(b)−g(a) (g(x)− g(a)) for x ∈ [a, b]. Then

by using the similar argument as in the Mean Value Theorem, the result follows. �

Theorem 1.17. Lagrange Remainder Theorem: Let f be a C(n+1) function defined on (a, b). Let
x0 ∈ (a, b). Then for each x ∈ (a, b), there is a point c between x0 and x such that

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n+1)(c)

(n+ 1)!
(x− x0)n+1.

Proof. We may assume that x0 < x < b. Case: We first assume that f (k)(x0) = 0 for all k = 0, 1, ..., n.
Put g(t) = (t − x0)n+1 for t ∈ [x0, x]. Then g′(t) = (n + 1)(t − x0)n and g(x0) = 0. Then by the

Cauchy Mean Value Theorem, there is x1 ∈ (x0, x) such that f(x)
g(x) = f(x)−f(x0)

g(x)−g(x0) = f ′(x1)
g′(x1)

. Using the

same step for f ′ and g′ on [x0, x1], there is x2 ∈ (x0, x1) such that f ′(x1)
g′(x1)

= f ′(x1)−f ′(x0)
g′(x1)−g′(x0) = f (2)(x2)

g(2)(x2)
. To

repeat the same step, there are x1, x2, ..., xn+1 in (a, b) such that xk ∈ (x0, xk−1) for k = 1, 2, ..., n+ 1
and

f(x)

g(x)
=
f ′(x1)

g′(x1)
= · · · = f (n+1)(xn+1)

g(n+1)(xn+1)
.

In addition, note that gn+1(xn+1) = (n + 1)!. Therefore, we have f(x)
g(x) = f (n+1)(xn+1)

(n+1)! , and hence

f(x) = f (n+1)(xn+1)
(n+1)! (x− x0)n+1. Note xn+1 ∈ (x0, x) and thus, the result holds for this case.
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For the general case, put G(x) = f(x) −
∑n

k=0
f (k)(x0)

k! (x − x0)k for x ∈ (a, b). Note that we have

G(x0) = G′(x0) = · · · = G(n)(x0) = 0. Then by the Claim above, there is a point c ∈ (x0, x) such that

G(x) = G(n+1)(c)
(n+1)! . Since G(n+1)(c) = f (n+1)(c), f(x) =

∑n
k=0

f (k)(x0)
k! (x− x0)k + f (n+1)(c)

(n+1)! . The proof is

complete. �

Example 1.18. Recall that the exponential function ex is defined by

ex :=

∞∑
k=0

xk

k!
:= lim

n→∞

n∑
k=0

xk

k!

for x ∈ R. Note that the above limit always exists for all x ∈ R (shown in the last chapter).
Show that the natural base e is an irrational number.
Put f(x) := ex for x ∈ R. It is a known fact f is a C∞ function and f (n)(x) = ex for all x ∈ R. Fix
any x > 0. Then by the Lagrange Theorem, for each positive integer n, there is cn ∈ (0, x) such that

f(x) =

n∑
k=0

xk

k!
+

ecn

(n+ 1)!
xn+1.

In particular, taking x = 1, we have

0 <
ecn

(n+ 1)!
= e−

n∑
k=0

1

k!
<

3

(n+ 1)!

for all positive integer n. Now if e = p/q for some positive integers p and q, and thus, we have

0 <
p

q
−

n∑
k=0

1

k!
<

3

(n+ 1)!

for all n = 1, 2... Now we can choose n large enough such that (n!)pq ∈ N. It leads to a contradiction

because we have

0 < (n!)
p

q
− (n!)

n∑
k=0

1

k!
<

3(n!)

(n+ 1)!
=

3

n+ 1
< 1.

Therefore, e is irrational.

Proposition 1.19. Let f be a C2 function on an open interval I and x0 ∈ I. Assume that f ′(x0) = 0.

Then f has local maximum (resp. local minimum) at x0 if f (2)(x0) < 0 (resp. f (2)(x0) > 0).

Proof. We assume that f (2)(x0) > 0. We want to show that x0 is a local minimum point of f . The
proof of another case is similar. Note that for any x ∈ I \{x0}. Then by the Lagrange Theorem, there
is a point c between x0 and x such that

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f (2)(x0)(x− x0)2 = f(x0) +

1

2
f (2)(x0)(x− x0)2.

f (2) is continuous at x0 and f (2)(x0) > 0, and so there is r > 0 such that f (2)(x) > 0 for all
x ∈ (x0 − r, x0 + r) ⊆ I. Therefore, we have

f(x) = f(x0) +
1

2
f (2)(x)(x− x0)2 ≥ f(x0)

for all x ∈ (x0 − r, x0 + r) and thus, x0 is a local minimum point of f as desired. �
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Proposition 1.20. L’Hospital’s Rule: Let f and g be the differentiable functions on (a, b) and let
c ∈ (a, b) Assume that f(c) = g(c) = 0, in addition, g′(x) 6= 0 and g(x) 6= 0 for all x ∈ (a, b) \ {c}. If

the limit L := lim
x→c

f ′(x)

g′(x)
exists, then so does lim

x→c

f(x)

g(x)
, moreover, we have L = lim

x→c

f(x)

g(x)
.

Proof. Fix c < x < b. Then by the Cauchy Mean Value Theorem, there is a point x1 ∈ (c, x) such
that

f(x)

g(x)
=
f(x)− f(c)

g(x)− g(c)
=
f ′(x1)

g′(x1)

x1 ∈ (c, x), so if L := lim
x→c

f ′(x)

g′(x)
exists, then lim

x→c+

f(x)

g(x)
exists and is equal to L.

Similarly, we also have lim
x→c−

f(x)

g(x)
= L. The proof is finished. �

Proposition 1.21. Let f be a function on (a, b) and let c ∈ (a, b).

(i) If f ′(c) exists, then the following limit exists (also called the symmetric derivatives of f at c):

f ′(c) = lim
t→0

f(c+ t)− f(c− t)
2t

.

(ii) If f (2)(c) exists, then

f (2)(c) = lim
t→0

f(c+ t)− 2f(c) + f(c− t)
t2

.

Proof. For showing (i), note that we have

f ′(c) = lim
t→0+

f(c+ t)− f(c)

t
= lim

t→0−

f(c+ t)− f(c)

t
.

Putting t = −s into the second equality above, we see that

f ′(c) = lim
s→0+

f(c− s)− f(c)

−s
.

To sum up the two equations above, we have

f ′(c) = lim
t→0+

f(c+ t)− f(c− t)
2t

.

Similarly, we have f ′(c) = lim
t→0−

f(c+ t)− f(c− t)
2t

. Part (i) follows.

For showing Part (ii), let h(t) := f(c + t) − 2f(c) + f(c − t) for t ∈ R. Then h(0) = 0 and h′(t) =
f ′(c+ t)− f ′(c− t). By using the L’Hospital’s Rule and Part (i), we have

lim
t→0

f(c+ t)− 2f(c) + f(c− t)
t2

= lim
t→0

h′(t)

(t2)′
= lim

t→0

f ′(c+ t)− f ′(c− t)
2t

= f (2)(c).

The proof is complete. �

Definition 1.22. A function f defined on (a, b) is said to be convex if for any pair a < x1 < x2 < b,
we have

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2)

for all t ∈ [0, 1].

Proposition 1.23. Let f be a C2 function on (a, b). Then f is a convex function if and only if

f (2)(x) ≥ 0 for all x ∈ (a, b).
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Proof. For showing (⇒): assume that f is a convex function. Fix a point c ∈ (a, b). f is convex, so
we have f(c) = f(12(c + t) + 1

2(c − t)) ≤ 1
2f(c + t) + 1

2f(c − t) for all t ∈ R with c ± t ∈ (a, b) . By
Proposition 1.21, we have

f (2)(c) = lim
t→0

f(c+ t)− 2f(c) + f(c− t)
t2

.

Therefore, we have f (2)(c) ≥ 0.

For (⇐), assume that f (2)(x) ≥ 0 for all x ∈ (a, b). Fix a < x1 < x2 < b and t ∈ [0, 1]. Let
c := (1 − t)x1 + tx2. Then by the Lagrange Reminder Theorem, there are points z1 ∈ (x1, c) and
z2 ∈ (c, x2) such that

f(x2) = f(c) + f ′(c)(x2 − c) +
1

2
f (2)(z2)(x2 − c)2

and

f(x1) = f(c) + f ′(c)(x1 − c) +
1

2
f (2)(z1)(x1 − c)2.

These two equations implies that

(1− t)f(x1) + tf(x2) = f(c) + (1− t)1

2
f (2)(z1)(x1 − c)2 + t

1

2
f (2)(z2)(x2 − c)2 ≥ f(c).

since f (2)(z1) and f (2)(z2) both are non-negative. Thus, f is convex. �

Corollary 1.24. Let p > 0. The function f(x) := xp is convex on (0,∞) if and only if p ≥ 1.

Proof. Note that f (2)(x) = p(p − 1)xp−2 for all x > 0. Then the result follows immediately from
Proposition 1.23. �

Proposition 1.25. Netwon’s Method: Let f be a continuous real-valued function defined on [a, b]
with f(a) < 0 < f(b) and f(z) = 0 for some z ∈ (a, b). Assume that f is a C2 function on (a, b) and
f ′(x) 6= 0 for all x ∈ (a, b). Then there is δ > 0 with J := [z−δ, z+δ] ⊆ [a, b] which have the following
property:
if we fix any x1 ∈ J and let

(1.1) xn+1 := xn −
f(xn)

f ′(xn)

for n = 1, 2, ..., then we have z = limxn.

Proof. We first choose r > 0 such that [z − r, z + r] ⊆ (a, b). We fix any point x1 ∈ (z − r, z + r) with
x1 6= z. Then by the Lagrange Remainder Theorem, there is a point ξ between z and x1 such that

0 = f(z) = f(x1) + f ′(x1)(z − x1) +
1

2
f (2)(ξ)(z − x1)2.

This, together with Eq 1.1 above, we have

x2 − x1 = − f(x1)

f ′(x1)
= z − x1 +

f (2)(ξ)

2f ′(x1)
(z − x1)2.

Therefore, we have

(1.2) x2 − z =
f (2)(ξ)

2f ′(x1)
(z − x1)2.
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Note that the functions f ′(x) and f (2)(x) are continuous on [z − r, z + r] and f ′(x) 6= 0, hence, there

is M > 0 such that |f
2)(u)

2f ′(v) | ≤M for all u, v ∈ [z − r, z + r]. Then the Eq 1.2 implies that

(1.3) |x2 − z| = |
f (2)(ξ)

2f ′(x1)
(z − x1)2| ≤M(z − x1)2.

Choose δ > 0 such that Mδ < 1 and J := [z − δ, z + δ] ⊆ (z − r, z + r). Note that Now we take any
x1 ∈ J . Eq 1.3 implies that |x2− z| ≤M · |z−x1|2 ≤ (Mδ) · |x1− z| < δ. By using Eq 1.1 inductively,
we have a sequence (xn) in J such that

|xn+1 − z| ≤M · |z − xn|2 ≤ (Mδ) · |xn − z|
for all n = 1, 2.... Therefore, we have

|xn+1 − z| ≤ (Mδ)n · |x1 − z|
for all n = 1, 2..., thus, limxn = z. The proof is complete. �
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2. Riemann Integrable Functions

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a, b] and m ≤ f ≤ M on
[a, b] .

(ii): Let P : a = x0 < x1 < .... < xn = b denote a partition on [a, b]; Put ∆xi = xi − xi−1 and
‖P‖ = max ∆xi.

(iii): Mi(f, P ) := sup{f(x) : x ∈ [xi−1, xi}; mi(f, P ) := inf{f(x) : x ∈ [xi−1, xi}.
Set ωi(f, P ) = Mi(f, P )−mi(f, P ).

(iv): (the upper sum of f): U(f, P ) :=
∑
Mi(f, P )∆xi

(the lower sum of f). L(f, P ) :=
∑
mi(f, P )∆xi.

Remark 2.1. It is clear that for any partition on [a, b], we always have

(i) m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M(b− a).
(ii) L(−f, P ) = −U(f, P ) and U(−f, P ) = −L(f, P ).

The following lemma is the critical step in this section.

Lemma 2.2. Let P and Q be the partitions on [a, b]. We have the following assertions.

(i) If P ⊆ Q, then L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).
(ii) We always have L(f, P ) ≤ U(f,Q).

Proof. For Part (i), we first claim that L(f, P ) ≤ L(f,Q) if P ⊆ Q. By using the induction on
l := #Q−#P , it suffices to show that L(f, P ) ≤ L(f,Q) as l = 1. Let P : a = x0 < x1 < · · · < xn = b
and Q = P ∪ {c}. Then c ∈ (xs−1, xs) for some s. Notice that we have

ms(f, P ) ≤ min{ms(f,Q),ms+1(f,Q)}.

So, we have

ms(f, P )(xs − xs−1) ≤ ms(f,Q)(c− xs−1) +ms+1(f,Q)(xs − c).
This gives the following inequality as desired.

(2.1) L(f,Q)− L(f, P ) = ms(f,Q)(c− xs−1) +ms+1(f,Q)(xs − c)−ms(f, P )(xs − xs−1) ≥ 0.

Now by considering −f in the Inequality 2.1 above, we see that U(f,Q) ≤ U(f, P ).
For Part (ii), let P and Q be any pair of partitions on [a, b]. Notice that P ∪Q is also a partition on
[a, b] with P ⊆ P ∪Q and Q ⊆ P ∪Q. So, Part (i) implies that

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

The proof is complete. �

The following notion plays an important role in this chapter.

Definition 2.3. Let f be a bounded function on [a, b]. The upper integral (resp. lower integral) of f

over [a, b], write
∫ b
a f (resp.

∫ b
a f), is defined by∫ b

a
f = inf{U(f, P ) : P is a partation on [a, b]}.
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(resp. ∫ b

a
f = sup{L(f, P ) : P is a partation on [a, b]}.)

Notice that the upper integral and lower integral of f must exist by Remark 2.1.

Remark 2.4. Appendix: We call a partially set (I,≤) a directed set if for each pair of elements i1
and i2 in I, there is i3 ∈ I such that i1 ≤ i3 and i2 ≤ i3.
A net in R is a real-valued function f defined on a directed set I, write f = (xi)i∈I , where xi := f(i)
for i ∈ I.
We say that a net (xi) converges to a point L ∈ R (call a limit of (xi)) if for any ε > 0, there is i0 ∈ I
such that |xi − L| < ε for all i ≥ i0.
Using the similar argument as in the sequence case, a limit of (xi) is unique if it exists and we write
limi xi for its limits.

Example 2.5. Appendix: Using the notation given as before, let

I := {P : P is a partitation on [a, b] }.
We say that P1 ≤ P2 for P1, P2 ∈ I if P1 ⊆ P2. Clearly, I is a directed set with this order. If we put
uP := U((f, P ), then we have

lim
P
uP =

∫ b

a
f.

In fact, let ε > 0. Then by the definition of an upper integral, there is P0 ∈ I such that∫ b

a
f ≤ U(f, P0) ≤

∫ b

a
f + ε.

Lemma 2.2 tells us that whenever P ∈ I with P ≥ P0, we have U(f, P ) ≤ U(f, P0). Thus we have

|uP −
∫ b
a f | < ε whenever P ≥ P0 as desired.

Proposition 2.6. Let f and g both are bounded functions on [a, b]. With the notation as above, we
always have

(i) ∫ b

a
f ≤

∫ b

a
f.

(ii)
∫ b
a (−f) = −

∫ b
a f.

(iii) ∫ b

a
f +

∫ b

a
g ≤

∫ b

a
(f + g) ≤

∫ b

a
(f + g) ≤

∫ b

a
f +

∫ b

a
g.

Proof. Part (i) follows from Lemma 2.2 at once.
Part (ii) is clearly obtained by L(−f, P ) = −U(f, P ).

For proving the inequality
∫ b
a f +

∫ b
a g ≤

∫ b
a (f + g) ≤ first. It is clear that we have L(f, P ) +L(g, P ) ≤

L(f +g, P ) for all partitions P on [a, b]. Now let P1 and P2 be any partition on [a, b]. Then by Lemma
2.2, we have

L(f, P1) + L(g, P2) ≤ L(f, P1 ∪ P2) + L(g, P1 ∪ P2) ≤ L(f + g, P1 ∪ P2) ≤
∫ b

a
(f + g).
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So, we have

(2.2)

∫ b

a
f +

∫ b

a
g ≤

∫ b

a
(f + g).

As before, we consider −f and −g in the Inequality 2.2, we get
∫ b
a (f + g) ≤

∫ b
a f +

∫ b
a g as desired. �

The following example shows the strict inequality in Proposition 2.6 (iii) may hold in general.

Example 2.7. Define a function f, g : [0, 1]→ R by

f(x) =

{
1 if x ∈ [0, 1] ∩Q;

−1 otherwise.

and

g(x) =

{
−1 if x ∈ [0, 1] ∩Q;

1 otherwise.

Then it is easy to see that f + g ≡ 0 and∫ 1

0
f =

∫ 1

0
g = 1 and

∫ 1

0
f =

∫ 1

0
g = −1.

So, we have

−2 =

∫ b

a
f +

∫ b

a
g <

∫ b

a
(f + g) = 0 =

∫ b

a
(f + g) <

∫ b

a
f +

∫ b

a
g = 2.

We can now reaching the main definition in this chapter.

Definition 2.8. Let f be a bounded function on [a, b]. We say that f is Riemann integrable over [a, b]

if
∫ a
b f =

∫ b
a f . In this case, we write

∫ b
a f for this common value and it is called the Riemann integral

of f over [a, b].
Also, write R[a, b] for the class of Riemann integrable functions on [a, b].

Proposition 2.9. With the notation as above, R[a, b] is a vector space over R and the integral∫ b

a
: f ∈ R[a, b] 7→

∫ b

a
f ∈ R

defines a linear functional, that is, αf + βg ∈ R[a, b] and
∫ b
a (αf + βg) = α

∫ b
a f + β

∫ b
a g for all

f, g ∈ R[a, b] and α, β ∈ R.

Proof. Let f, g ∈ R[a, b] and α, β ∈ R. Notice that if α ≥ 0, it is clear that
∫ b
aαf = α

∫ b
a f = α

∫ b
a f =

α
∫ b
a f =

∫ b
aαf . Also, if α < 0, we have

∫ b
aαf = α

∫ b
a f = α

∫ b
a f = α

∫ b
a f =

∫ b
aαf . Therefore, we have∫ b

a αf = α
∫ b
a f for all α ∈ R. For showing f + g ∈ R[a, b] and

∫ b
a (f + g) =

∫ b
a f +

∫ b
a g, these will

follows from Proposition 2.6 (iii) at once. The proof is finished. �
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The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P : a = x0 < x1 < · · · < xn = b and 1 ≤ i ≤ n, put

ωi(f, P ) := sup{|f(x)− f(x′)| : x, x′ ∈ [xi−1, xi]}.
It is easy to see that U(f, P )− L(f, P ) =

∑n
i=1 ωi(f, P )∆xi.

Theorem 2.10. Let f be a bounded function on [a, b]. Then f ∈ R[a, b] if and only if for all ε > 0,
there is a partition P : a = x0 < · · · < xn = b on [a, b] such that

(2.3) 0 ≤ U(f, P )− L(f, P ) =
n∑
i=1

ωi(f, P )∆xi < ε.

Proof. Suppose that f ∈ R[a, b]. Let ε > 0. Then by the definition of the upper integral and lower

integral of f , we can find the partitions P and Q such that U(f, P ) <
∫ b
a f + ε and

∫ b
a f − ε < L(f,Q).

By considering the partition P ∪Q, we see that∫ b

a
f − ε < L(f,Q) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f, P ) <

∫ b

a
f + ε.

Since
∫ b
a f =

∫ b
a f =

∫ b
a f , we have 0 ≤ U(f, P ∪Q) − L(f, P ∪Q) < 2ε. So, the partition P ∪Q is as

desired.
Conversely, let ε > 0, assume that the Inequality 2.3 above holds for some partition P . Notice that
we have

L(f, P ) ≤
∫ b

a
f ≤

∫ b

a
f ≤ U(f, P ).

So, we have 0 ≤
∫ b
a f −

∫ b
a f < ε for all ε > 0. The proof is finished. �

Remark 2.11. Theorem 8.3 tells us that a bounded function f is Riemann integrable over [a, b] if and
only if the “size” of the discontinuous set of f is arbitrary small.

Example 2.12. Let f : [0, 1]→ R be the function defined by

f(x) =

{
1
p if x = q

p , where p, q are relatively prime positive integers;

0 otherwise.

Then f ∈ R[0, 1].
(Notice that the set of all discontinuous points of f , say D, is just the set of all (0, 1] ∩Q. Since the
set (0, 1] ∩ Q is countable, we can write (0, 1] ∩ Q = {z1, z2, ....}. So, if we let m(D) be the “size′′ of
the set D, then m(D) = m(

⋃∞
i=1{zi}) =

∑∞
i=1m({zi}) = 0, in here, you may think that the size of

each set {zi} is 0. )

Proof. Let ε > 0. By Theorem 8.3, it aims to find a partition P on [0, 1] such that

U(f, P )− L(f, P ) < ε.

Notice that for x ∈ [0, 1] such that f(x) ≥ ε if and only if x = q/p for a pair of relatively prime positive
integers p, q with 1

p ≥ ε. Since 1 ≤ q ≤ p, there are only finitely many pairs of relatively prime positive

integers p and q such that f( qp) ≥ ε. So, if we let S := {x ∈ [0, 1] : f(x) ≥ ε}, then S is a finite subset
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of [0, 1]. Let L be the number of the elements in S. Then, for any partition P : a = x0 < · · · < xn = 1,
we have

n∑
i=1

ωi(f, P )∆xi = (
∑

i:[xi−1,xi]∩S=∅

+
∑

i:[xi−1,xi]∩S 6=∅

) ωi(f, P )∆xi.

Notice that if [xi−1, xi] ∩ S = ∅, then we have ωi(f, P ) ≤ ε and thus,∑
i:[xi−1,xi]∩S=∅

ωi(f, P )∆xi ≤ ε
∑

i:[xi−1,xi]∩S=∅

∆xi ≤ ε(1− 0).

On the other hand, since there are at most 2L sub-intervals [xi−1, xi] such that [xi−1, xi] ∩ S 6= ∅ and
ωi(f, P ) ≤ 1 for all i = 1, ..., n, so, we have∑

i:[xi−1,xi]∩S 6=∅

ωi(f, P )∆xi ≤ 1 ·
∑

i:[xi−1,xi]∩S 6=∅

∆xi ≤ 2L‖P‖.

We can now conclude that for any partition P , we have
n∑
i=1

ωi(f, P )∆xi ≤ ε+ 2L‖P‖.

So, if we take a partition P with ‖P‖ < ε/(2L), then we have
∑n

i=1 ωi(f, P )∆xi ≤ 2ε.
The proof is finished. �

Proposition 2.13. Let f be a function defined on [a, b]. If f is either monotone or continuous on
[a, b], then f ∈ R[a, b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P : a = x0 < · · · < xn = b, we have ωi(f, P ) = f(xi) − f(xi−1). So, if
‖P‖ < ε, we have
n∑
i=1

ωi(f, P )∆xi =
n∑
i=1

(f(xi)−f(xi−1))∆xi < ‖P‖
n∑
i=1

(f(xi)−f(xi−1)) = ‖P‖(f(b)−f(a)) < ε(f(b)−f(a)).

Therefore, f ∈ R[a, b] if f is monotone.
Suppose that f is continuous on [a, b]. Then f is uniform continuous on [a, b]. Then for any ε > 0,
there is δ > 0 such that |f(x)−f(x′)| < ε as x, x′ ∈ [a, b] with |x−x′| < δ. So, if we choose a partition
P with ‖P‖ < δ, then ωi(f, P ) < ε for all i. This implies that

n∑
i=1

ωi(f, P )∆xi ≤ ε
n∑
i=1

∆xi = ε(b− a).

The proof is complete. �

Proposition 2.14. We have the following assertions.

(i) If f, g ∈ R[a, b] with f ≤ g, then
∫ b
a f ≤

∫ b
a g.

(ii) If f ∈ R[a, b], then the absolute valued function |f | ∈ R[a, b]. In this case, we have |
∫ b
a f | ≤∫ b

a |f |.

Proof. For Part (i), it is clear that we have the inequality U(f, P ) ≤ U(g, P ) for any partition P . So,

we have
∫ b
a f =

∫ b
a f ≤

∫ b
a g =

∫ b
a g.

For Part (ii), the integrability of |f | follows immediately from Theorem 8.3 and the simple inequality
||f |(x′) − |f |(x′′)| ≤ |f(x′) − f(x′′)| for all x′, x′′ ∈ [a, b]. Thus, we have U(|f |, P ) − L(|f |, P ) ≤
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U(f, P )− L(f, P ) for any partition P on [a, b].

Finally, since we have −f ≤ |f | ≤ f , by Part (i), we have |
∫ b
a f | ≤

∫ b
a |f | at once. �

Proposition 2.15. Let a < c < b. We have f ∈ R[a, b] if and only if the restrictions f |[a,c] ∈ R[a, c]
and f |[c,b] ∈ R[c, b]. In this case we have

(2.4)

∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Proof. Let f1 := f |[a,c] and f2 := f |[c,b].
It is clear that we always have

U(f1, P1)− L(f1, P1) + U(f2, P2)− L(f2, P2) = U(P, f)− L(f, P )

for any partition P1 on [a, c] and P2 on [c, b] with P = P1 ∪ P2.
From this, we can show the sufficient condition at once.
For showing the necessary condition, since f ∈ R[a, b], for any ε > 0, there is a partition Q on [a, b]
such that U(f,Q)− L(f,Q) < ε by Theorem 8.3. Notice that there are partitions P1 and P2 on [a, c]
and [c, b] respectively such that P := Q ∪ {c} = P1 ∪ P2. Thus, we have

U(f1, P1)− L(f1, P1) + U(f2, P2)− L(f2, P2) = U(f, P )− L(f, P ) ≤ U(f,Q)− L(f,Q) < ε.

So, we have f1 ∈ R[a, c] and f2 ∈ R[c, b].
It remains to show the Equation 2.4 above. Notice that for any partition P1 on [a, c] and P2 on [c, b],
we have

L(f1, P1) + L(f2, P2) = L(f, P1 ∪ P2) ≤
∫ b

a
f =

∫ b

a
f.

So, we have
∫ c
a f +

∫ b
c f ≤

∫ b
a f . Then the inverse inequality can be obtained at once by considering

the function −f . Then the resulted is obtained by using Theorem 8.3. �

Proposition 2.16. Let f and g be Riemann integrable functions defined ion [a, b]. Then the pointwise
product function f · g ∈ R[a, b].

Proof. We first show that the square function f2 is Riemann integrable. In fact, if we let M =
sup{|f(x)| : x ∈ [a, b]}, then we have ωk(f

2, P ) ≤ 2Mωk(f, P ) for any partition P : a = x0 < · · · <
an = b because we always have |f2(x) − f2(x′)| ≤ 2M |f(x) − f(x′)| for all x, x′ ∈ [a, b]. Then by
Theorem 8.3, the square function f2 ∈ R[a, b].
This, together with the identity f · g = 1

2((f + g)2 − f2 − g2). The result follows. �

Remark 2.17. In the proof of Proposition 2.16, we have shown that if f ∈ R[a, b], then so is its
square function f2. However, the converse does not hold. For example, if we consider f(x) = 1 for
x ∈ Q ∩ [0, 1] and f(x) = −1 for x ∈ Qc ∩ [0, 1], then f /∈ R[0, 1] but f2 ≡ 1 on [0, 1].

Proposition 2.18. (Mean Value Theorem for Integrals)
Let f and g be the functions defined on [a, b]. Assume that f is continuous and g is a non-negative
Riemann integrable function. Then, there is a point ξ ∈ (a, b) such that

(2.5)

∫ b

a
f(x)g(x)dx = f(ξ)

∫ b

a
g(x)dx.

Proof. By the continuity of f on [a, b], there exist two points x1 and x2 in [a, b] such that

f(x1) = m := min f(x); and f(x2) = M := max f(x).
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We may assume that a ≤ x1 < x2 ≤ b. From this, since g ≤ 0, we have

mg(x) ≤ f(x)g(x) ≤Mg(x)

for all x ∈ [a, b]. From this and Proposition 2.16 above, we have

m

∫ b

a
g ≤

∫ b

a
fg ≤M

∫ b

a
g.

So, if
∫ b
a g = 0, then the result follows at once.

We may now suppose that
∫ b
a g > 0. The above inequality shows that

m = f(x1) ≤
∫ b
a fg∫ b
a g
≤ f(x2) = M.

Therefore, there is a point ξ ∈ [x1, x2] ⊆ [a, b] so that the Equation 2.5 holds by using the Intermediate
Value Theorem for the function f . Thus, it remains to show that such element ξ can be chosen in
(a, b).
Let a ≤ x1 < x2 ≤ b be as above.
If x1 and x2 can be found so that a < x1 < x2 < b, then the result is proved immediately since
ξ ∈ [x1, x2] ⊂ (a, b) in this case.
Now suppose that x1 or x2 does not exist in (a, b), i.e., m = f(a) < f(x) for all x ∈ (a, b] or
f(x) < f(b) = M for all x ∈ [a, b).

Claim 1: If f(a) < f(x) for all x ∈ (a, b], then
∫ b
a fg > f(a)

∫ b
a g and hence, ξ ∈ (a, x2] ⊆ (a, b].

For showing Claim1, put h(x) := f(x)− f(a) for x ∈ [a, b]. Then h is continuous on [a, b] and h > 0

on (a, b]. This implies that
∫ d
c h > 0 for any subinterval [c, d] ⊆ [a, b]. (Why?)

On the other hand, since
∫ b
a
g =

∫ b
a g > 0, there is a partition P : a = x0 < · · · < xn = b so that

L(g, P ) > 0. This implies that mk(g, P ) > 0 for some sub-interval [xk−1, xk]. Therefore, we have∫ b

a
hg ≥

∫ xk

xk−1

hg ≥ mk(g, P )

∫ xk

xk−1

h > 0.

Hence, we have
∫ b
a fg > f(a)

∫ b
a g. Claim 1 follows.

Similarly, one can show that if f(x) < f(b) = M for all x ∈ [a, b), then we have
∫ b
a fg < f(b)

∫ b
a g.

This, together with Claim 1 give us that such ξ can be found in (a, b). The proof is finished. �

Now if f ∈ R[a, b], then by Proposition 2.15, we can define a function F : [a, b]→ R by

(2.6) F (c) =

{
0 if c = a∫ c
a f if a < c ≤ b.

Theorem 2.19. Fundamental Theorem of Calculus: With the notation as above, assume that
f ∈ R[a, b], we have the following assertion.

(i) If there is a continuous function F on [a, b] which is differentiable on (a, b) with F ′ = f ,

then
∫ b
a f = F (b) − F (a). In this case, F is called an indefinite integral of f . (note: if

F1 and F2 both are the indefinite integrals of f , then by the Mean Value Theorem, we have
F2 = F1 + constant).

(ii) The function F defined as in Eq. 2.6 above is continuous on [a, b]. Furthermore, if f is
continuous on [a, b], then F ′ exists on (a, b) and F ′ = f on (a, b).



16 CHI-WAI LEUNG

Proof. For Part (i), notice that for any partition P : a = x0 < · · · < xn = b, then by the Mean Value
Theorem, for each [xi−1, xi], there is ξi ∈ (xi−1, xi) such that F (xi)−F (xi−1) = F ′(ξi)∆xi = f(ξi)∆xi.
So, we have

L(f, P ) ≤
∑

f(ξi)∆xi =
∑

F (xi)− F (xi−1) = F (b)− F (a) ≤ U(f, P )

for all partitions P on [a, b]. This gives∫ b

a
f =

∫ b

a
f ≤ F (b)− F (a) ≤

∫ b

a
f =

∫ b

a
f

as desired.
For showing the continuity of F in Part (ii), let a < c < x < b. If |f | ≤ M on [a, b], then we have
|F (x)−F (c)| = |

∫ x
c f | ≤M(x− c). So, limx→c+ F (x) = F (c). Similarly, we also have limx→c− F (x) =

F (c). Thus F is continuous on [a, b].
Now assume that f is continuous on [a, b]. Notice that for any t > 0 with a < c < c+ t < b, we have

inf
x∈[c,c+t]

f(x) ≤ 1

t
(F (c+ t)− F (c)) =

1

t

∫ c+t

c
f ≤ sup

x∈[c,c+t]
f(x).

Since f is continuous at c, we see that lim
t→0+

1

t
(F (c+t)−F (c)) = f(c). Similarly, we have lim

t→0−

1

t
(F (c+

t)− F (c)) = f(c). So, we have F ′(c) = f(c) as desired. The proof is finished. �

Definition 2.20. For each function f on [a, b] and a partition P : a = x0 < · · · < xn = b, we call

R(f, P, {ξi}) :=
∑N

I=1 f(ξi)∆xi, where ξi ∈ [xi−1, xi], the Riemann sum of f over [a, b].
We say that the Riemann sum R(f, P, {ξi}) converges to a number A as ‖P‖ → 0, write A =

lim
‖P‖→0

R(f, P, {ξi}), if for any ε > 0, there is δ > 0 such that

|A−R(f, P, {ξi})| < ε

whenever ‖P‖ < δ and for any ξi ∈ [xi−1, xi].

Proposition 2.21. Let f be a function defined on [a, b]. If the limit lim
‖P‖→0

R(f, P, {ξi}) = A exists,

then f is automatically bounded.

Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition P : a = x0 <
· · · < xn = b such that |

∑n
k=1 f(ξk)∆xk| < 1 + |A| for any ξk ∈ [xk−1, xk]. Since f is unbounded, we

may assume that f is unbounded on [a, x1]. In particular, we choose ξk = xk for k = 2, ..., n. Also, we
can choose ξ1 ∈ [a, x1] such that

|f(ξ1)|∆x1 > 1 + |A|+ |
n∑
k=2

f(xk)∆xk|.

It leads to a contradiction because we have 1 + |A| > |f(ξ1)|∆x1 − |
∑n

k=2 f(xk)∆xk|. The proof is
finished. �

Lemma 2.22. f ∈ R[a, b] if and only if for any ε > 0, there is δ > 0 such that U(f, P )−L(f, P ) < ε
whenever ‖P‖ < δ.

Proof. The converse follows from Theorem 8.3.
Assume that f is integrable over [a, b]. Let ε > 0. Then there is a partition Q : a = y0 < ... < yl = b on
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[a, b] such that U(f,Q)− L(f,Q) < ε. Now take 0 < δ < ε/l. Suppose that P : a = x0 < ... < xn = b
with ‖P‖ < δ. Then we have

U(f, P )− L(f, P ) = I + II

where

I =
∑

i:Q∩[xi−1,xi]=∅

ωi(f, P )∆xi;

and

II =
∑

i:Q∩[xi−1,xi]6=∅

ωi(f, P )∆xi

Notice that we have

I ≤ U(f,Q)− L(f,Q) < ε

and

II ≤ (M −m)
∑

i:Q∩[xi−1,xi]6=∅

∆xi ≤ (M −m) · 2l · ε
l

= 2(M −m)ε.

The proof is finished. �

Theorem 2.23. f ∈ R[a, b] if and only if the Riemann sum R(f, P, {ξi}) is convergent. In this case,

R(f, P, {ξi}) converges to

∫ b

a
f(x)dx as ‖P‖ → 0.

Proof. For the proof (⇒) : we first note that we always have

L(f, P ) ≤ R(f, P, {ξi}) ≤ U(f, P )

and

L(f, P ) ≤
∫ b

a
f(x)dx ≤ U(f, P )

for any partition P and ξi ∈ [xi−1, xi].
Now let ε > 0. Lemma 2.22 gives δ > 0 such that U(f, P )−L(f, P ) < ε as ‖P‖ < δ. Then we have

|
∫ b

a
f(x)dx−R(f, P, {ξi})| < ε

as ‖P‖ < δ and ξi ∈ [xi−1, xi]. The necessary part is proved and R(f, P, {ξi}) converges to

∫ b

a
f(x)dx.

For (⇐) : assume that there is a number A such that for any ε > 0, there is δ > 0, we have

A− ε < R(f, P, {ξi}) < A+ ε

for any partition P with ‖P‖ < δ and ξi ∈ [xi−1, xi].
Note that f is automatically bounded in this case by Proposition 2.21.
Now fix a partition P with ‖P‖ < δ. Then for each [xi−1, xi], choose ξi ∈ [xi−1, xi] such that
Mi(f, P )− ε ≤ f(ξi). This implies that we have

U(f, P )− ε(b− a) ≤ R(f, P, {ξi}) < A+ ε.

Thus, we have shown that for any ε > 0, there is a partition P such that

(2.7)

∫ b

a
f(x)dx ≤ U(f, P ) ≤ A+ ε(1 + b− a).
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By considering −f , note that the Riemann sum of −f will converge to −A. The inequality 8.1 will
imply that for any ε > 0, there is a partition P such that

A− ε(1 + b− a) ≤
∫ b

a
f(x)dx ≤

∫ b

a
f(x)dx ≤ A+ ε(1 + b− a).

The proof is complete. �

Theorem 2.24. Let f ∈ R[c, d] and let φ : [a, b] −→ [c, d] be a strictly increasing C1 function with
f(a) = c and f(b) = d.
Then f ◦ φ ∈ R[a, b], moreover, we have∫ d

c
f(x)dx =

∫ b

a
f(φ(t))φ′(t)dt.

Proof. Let A =
∫ d
c f(x)dx. By using Theorem 2.23, we need to show that for all ε > 0, there is δ > 0

such that

|A−
∑

f(φ(ξk))φ
′(ξk)4tk| < ε

for all ξk ∈ [tk−1, tk] whenever Q : a = t0 < ... < tm = b with ‖Q‖ < δ.
Now let ε > 0. Then by Lemma 2.22 and Theorem 2.23, there is δ1 > 0 such that

(2.8) |A−
∑

f(ηk)4xk| < ε

and

(2.9)
∑

ωk(f, P )4xk < ε

for all ηk ∈ [xk−1, xk] whenever P : c = x0 < ... < xm = d with ‖P‖ < δ1.
Now put x = φ(t) for t ∈ [a, b].
Now since φ and φ′ are continuous on [a, b], there is δ > 0 such that |φ(t) − φ(t′)| < δ1 and |φ′(t) −
φ′(t′)| < ε for all t, t′ in[a, b] with |t− t′| < δ.
Now let Q : a = t0 < ... < tm = b with ‖Q‖ < δ. If we put xk = φ(tk), then P : c = x0 < .... < xm = d
is a partition on [c, d] with ‖P‖ < δ1 because φ is strictly increasing.
Note that the Mean Value Theorem implies that for each [tk−1, tk], there is ξ∗k ∈ (tk−1, tk) such that

4xk = φ(tk)− φ(tk−1) = φ′(ξ∗k)∆tk.

This yields that

(2.10) |4xk − φ′(ξk)4tk| < ε∆tk

for any ξk ∈ [tk−1, tk] for all k = 1, ...,m because of the choice of δ.
Now for any ξk ∈ [tk−1, tk], we have

(2.11)

|A−
∑

f(φ(ξk))φ
′(ξk)4tk| ≤ |A−

∑
f(φ(ξ∗k))φ′(ξ∗k)4tk|

+ |
∑

f(φ(ξ∗k))φ′(ξ∗k)4tk −
∑

f(φ(ξ∗k))φ′(ξk)4tk|

+ |
∑

f(φ(ξ∗k))φ′(ξk)4tk −
∑

f(φ(ξk))φ
′(ξk)4tk|

Notice that inequality 8.2 implies that

|A−
∑

f(φ(ξ∗k))φ′(ξ∗k)4tk| = |A−
∑

f(φ(ξ∗k))4xk| < ε.

Moreover, since we have |φ′(ξ∗k)− φ′(ξk)| < ε for all k = 1, ..,m, we have

|
∑

f(φ(ξ∗k))φ′(ξ∗k)4tk −
∑

f(φ(ξ∗k))φ′(ξk)4tk| ≤M(b− a)ε
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where |f(x)| ≤M for all x ∈ [c, d].
On the other hand, by using inequality 8.4 we have

|φ′(ξk)4tk| ≤ 4xk + ε4tk

for all k. This, together with inequality 8.3 imply that

|
∑

f(φ(ξ∗k))φ′(ξk)4tk −
∑

f(φ(ξk))φ
′(ξk)4tk|

≤
∑

ωk(f, P )|φ′(ξk)4tk| (∵ φ(ξ∗k), φ(ξk) ∈ [xk−1, xk])

≤
∑

ωk(f, P )(4xk + ε4tk)
≤ ε+ 2M(b− a)ε.

Finally by inequality 8.5, we have

|A−
∑

f(φ(ξk))φ
′(ξk)4tk| ≤ ε+M(b− a)ε+ ε+ 2M(b− a)ε.

The proof is complete. �

3. Improper Riemann Integrals

Definition 3.1. Let −∞ < a < b <∞.

(i) Let f be a function defined on [a,∞). Assume that the restriction f |[a,T ] is integrable over

[a, T ] for all T > a. Put

∫ ∞
a

f := lim
T→∞

∫ T

a
f if this limit exists.

Similarly, we can define
∫ b
−∞ f if f is defined on (−∞, b].

(ii) If f is defined on (a, b] and f |[c,b] ∈ R[c, b] for all a < c < b. Put

∫ b

a
f := lim

c→a+

∫ b

c
f if it

exists.
Similarly, we can define

∫ b
a f if f is defined on [a, b).

(iii) As f is defined on R, if
∫∞
0 f and

∫ 0
−∞ f both exist, then we put

∫∞
−∞ f =

∫ 0
−∞ f +

∫∞
0 f .

In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the
integrals are convergent.

Example 3.2. Define ( formally) an improper integral Γ(s) ( called the Γ-function) as follows:

Γ(s) :=

∫ ∞
0

xs−1e−xdx

for s ∈ R. Then Γ(s) is convergent if and only if s > 0.

Proof. Put I(s) :=
∫ 1
0 x

s−1e−xdx and II(s) :=
∫∞
1 xs−1e−xdx. We first claim that the integral II(s)

is convergent for all s ∈ R.
In fact, if we fix s ∈ R, then we have

lim
x→∞

xs−1

ex/2
= 0.

So there is M > 1 such that xs−1

ex/2
≤ 1 for all x ≥M . Thus we have

0 ≤
∫ ∞
M

xs−1e−xdx ≤
∫ ∞
M

e−x/2dx <∞.
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Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < η < 1, we have

0 ≤
∫ 1

η
xs−1e−xdx ≤

∫ 1

η
xs−1dx =

{
1
s (1− ηs) if s− 1 6= −1;

− ln η otherwise .

Thus the integral I(s) = lim
η→0+

∫ 1

η
xs−1e−xdx is convergent if s > 0.

Conversely, we also have∫ 1

η
xs−1e−xdx ≥ e−1

∫ 1

η
xs−1dx =

{
e−1

s (1− ηs) if s− 1 6= −1;

−e−1 ln η otherwise .

So if s ≤ 0, then
∫ 1
η x

s−1e−xdx is divergent as η → 0+. The result follows. �

4. Some results of sequences of functions

Proposition 4.1. Let fn : (a, b) −→ R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(x) point-wise converges to a function f(x) on (a, b);
(ii) : each fn is a C1 function on (a, b);

(iii) : f ′n → g uniformly on (a, b).

Then f is a C1-function on (a, b) with f ′ = g.

Proof. Fix c ∈ (a, b). Then for each x with c < x < b (similarly, we can prove it in the same way as
a < x < c), the Fundamental Theorem of Calculus implies that

fn(x) =

∫ x

c
f ′(t)dt+ fn(c).

Since f ′n → g uniformly on (a, b), we see that∫ x

c
f ′n(t)dt −→

∫ x

c
g(t)dt.

This gives

(4.1) f(x) =

∫ x

c
g(t)dt+ f(c).

for all x ∈ (c, b). Similarly, we have f(x) =
∫ x
c g(t)dt+ f(c) for all x ∈ (a, b).

On the other hand, g is continuous on (a, b) since each f ′n is continuous and f ′n → g uniformly on
(a, b). Equation 9.1 will tell us that f ′ exists and f ′ = g on (a, b). The proof is finished. �

Proposition 4.2. Let (fn) be a sequence of differentiable functions defined on (a, b). Assume that

(i): there is a point c ∈ (a, b) such that lim fn(c) exists;
(ii): f ′n converges uniformly to a function g on (a, b).

Then

(a): fn converges uniformly to a function f on (a, b);
(b): f is differentiable on (a, b) and f ′ = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let ε > 0. Then by the assumptions (i) and (ii), there is a positive integer N such that

|fm(c)− fn(c)| < ε and |f ′m(x)− f ′n(x)| < ε
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for all m,n ≥ N and for all x ∈ (a, b). Now fix c < x < b and m,n ≥ N . To apply the Mean Value
Theorem for fm − fn on (c, x), then there is a point ξ between c and x such that

(4.2) fm(x)− fn(x) = fm(c)− fn(c) + (f ′m(ξ)− f ′n(ξ))(x− c).
This implies that

|fm(x)− fn(x)| ≤ |fm(c)− fn(c)|+ |f ′m(ξ)− f ′n(ξ)||x− c| < ε+ (b− a)ε

for all m,n ≥ N and for all x ∈ (c, b). Similarly, when x ∈ (a, c), we also have

|fm(x)− fn(x)| < ε+ (b− a)ε.

So Part (a) follows.
Let f be the uniform limit of (fn) on (a, b)
For Part (b), we fix u ∈ (a, b). We are going to show

lim
x→u

f(x)− f(u)

x− u
= g(u).

Let ε > 0. Since (f ′n) is uniformly convergent on (a, b), there is N ∈ N such that

(4.3) |f ′m(x)− f ′n(x)| < ε

for all m,n ≥ N and for all x ∈ (a, b)
Note that for all m ≥ N and x ∈ (a, b)\{u}, applying the Mean value Theorem for fm−fN as before,
we have

fm(x)− fN (x)

x− u
=
fm(u)− fN (u)

x− u
+ (f ′m(ξ)− f ′N (ξ))

for some ξ between u and x.
So Eq.9.3 implies that

(4.4) |fm(x)− fm(u)

x− u
− fN (x)− fN (u)

x− u
| ≤ ε

for all m ≥ N and for all x ∈ (a, b) with x 6= u.
Taking m→∞ in Eq.9.4, we have

|f(x)− f(u)

x− u
− fN (x)− fN (u)

x− u
| ≤ ε.

Hence we have

|f(x)− f(u)

x− u
− f ′N (u)| ≤ |f(x)− f(u)

x− c
− fN (x)− fN (u)

x− u
|+ |fN (x)− fN (u)

x− u
− f ′N (u)|

≤ ε+ |fN (x)− fN (u)

x− u
− f ′N (u)|.

So if we can take 0 < δ such that |fN (x)−fN (u)
x−u − f ′N (u)| < ε for 0 < |x− u| < δ, then we have

(4.5) |f(x)− f(u)

x− u
− f ′N (u)| ≤ 2ε

for 0 < |x − u| < δ. On the other hand, by the choice of N , we have |f ′m(y) − f ′N (y)| < ε for all
y ∈ (a, b) and m ≥ N . So we have |g(u)− f ′N (u)| ≤ ε. This together with Eq.9.5 give

|f(x)− f(u)

x− u
− g(u)| ≤ 3ε

as 0 < |x− u| < δ, that is we have

lim
x→u

f(x)− f(u)

x− u
= g(u).
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The proof is finished. �

Remark 4.3. The uniform convergence assumption of (f ′n) in the Propositions above is essential.

Example 4.4. Let fn(x) := x
1+n2x2

for x ∈ (−1, 1). Then we have

g(x) := lim
n
f ′n(x) := lim

n

1− n2x2

(1 + n2x2)2
=

{
0 if x 6= 0;

1 if x = 0.

On the other hand, fn → 0 uniformly on (−1, 1). In fact, if f ′n(1/n) = 0 for all n = 1, 2, .., then fn
attains the maximal value fn(1/n) = 1

2n at x = 1/n for each n = 1, ... and hence, fn → 0 uniformly
on (−1, 1).
So Propositions 9.1 and 9.2 does not hold. Note that (f ′n) does not converge uniformly to g on (−1, 1).

Proposition 4.5. (Dini’s Theorem): Let A be a compact subset of R and fn : A→ R be a sequence
of continuous functions defined on A. Suppose that

(i) for each x ∈ A, we have fn(x) ≤ fn+1(x) for all n = 1, 2...;
(ii) the pointwise limit f(x) := limn fn(x) exists for all x ∈ A;

(iii) f is continuous on A.

Then fn converges to f uniformly on A.

Proof. Let gn := f − fn defined on A. Then each gn is continuous and gn(x) ↓ 0 pointwise on A. It
suffices to show that gn converges to 0 uniformly on A.
Method I: Suppose not. Then there is ε > 0 such that for all positive integer N , we have

(4.6) gn(xn) ≥ ε.

for some n ≥ N and some xn ∈ A. From this, by passing to a subsequence we may assume that
gn(xn) ≥ ε for all n = 1, 2, .... Then by using the compactness of A, there is a convergent subsequence
(xnk

) of (xn) in A. Let z := lim
k
xnk
∈ A. Since gnk

(z) ↓ 0 as k → ∞. So, there is a positive

integer K such that 0 ≤ gnK (z) < ε/2. Since gnK is continuous at z and lim
i
xni = z, we have

lim
i
gnK (xni) = gnK (z). So, we can choose i large enough such that i > K

gni(xni) ≤ gnK (xni) < ε/2

because gm(xni) ↓ 0 as m→∞. This contradicts to the Inequality 4.6.
Method II: Let ε > 0. Fix x ∈ A. Since gn(x) ↓ 0, there is N(x) ∈ N such that 0 ≤ gn(x) < ε for
all n ≥ N(x). Since gN(x) is continuous, there is δ(x) > 0 such that gN(x)(y) < ε for all y ∈ A with
|x−y| < δ(x). If we put Jx := (x− δ(x), x+ δ(x)), then A ⊆

⋃
x∈A Jx. Then by the compactness of A,

there are finitely many x1, ..., xm in A such that A ⊆ Jx1∪· · ·∪Jxm . Put N := max(N(x1), ..., N(xm)).
Now if y ∈ A, then y ∈ J(xi) for some 1 ≤ i ≤ m. This implies that

gn(y) ≤ gN(xi)(y) < ε

for all n ≥ N ≥ N(xi). �
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5. Absolutely convergent series

Throughout this section, let (an) be a sequence of complex numbers.

Definition 5.1. We say that a series
∞∑
n=1

an is absolutely convergent if
∞∑
n=1

|an| <∞.

Also a convergent series
∞∑
n=1

an is said to be conditionally convergent if it is not absolute convergent.

Example 5.2. Important Example : The series
∞∑
n=1

(−1)n+1

nα
is conditionally convergent when

0 < α ≤ 1.
This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.
For instance, if we consider the function f : [1,∞) −→ R given by

f(x) =
(−1)n+1

nα
if n ≤ x < n+ 1.

If α = 1/2, then

∫ ∞
1

f(x)dx is convergent but it is neither absolutely convergent nor square integrable.

Notation 5.3. Let σ : {1, 2...} −→ {1, 2....} be a bijection. A formal series

∞∑
n=1

aσ(n) is called an

rearrangement of
∞∑
n=1

an.

Example 5.4. In this example, we are going to show that there is an rearrangement of the series
∞∑
i=1

(−1)i+1

i
is divergent although the original series is convergent. In fact, it is conditionally conver-

gent.
We first notice that the series

∑
i

1
2i−1 diverges to infinity. Thus for each M > 0, there is a positive

integer N such that
n∑
i=1

1

2i− 1
≥M · · · · · · · · · (∗)

for all n ≥ N . Then there is N1 ∈ N such that

N1∑
i=1

1

2i− 1
− 1

2
> 1.

By using (∗) again, there is a positive integer N2 with N1 < N2 such that

N1∑
i=1

1

2i− 1
− 1

2
+

∑
N1<i≤N2

1

2i− 1
− 1

4
> 2.

To repeat the same procedure, we can find a positive integers subsequence (Nk) such that

N1∑
i=1

1

2i− 1
− 1

2
+

∑
N1<i≤N2

1

2i− 1
− 1

4
+ · · · · · · · · · −

∑
Nk−1<i≤Nk

1

2i− 1
− 1

2k
> k
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for all positive integers k. So if we let an = (−1)n+1

n , then one can find a bijection σ : N→ N such that

the series
∞∑
i=1

aσ(i) is an rearrangement of the series
∞∑
i=1

(−1)i+1

i
and diverges to infinity. The proof

is finished.

Theorem 5.5. Let

∞∑
n=1

an be an absolutely convergent series. Then for any rearrangement

∞∑
n=1

aσ(n)

is also absolutely convergent. Moreover, we have
∞∑
n=1

an =
∞∑
n=1

aσ(n).

Proof. Let σ : {1, 2...} −→ {1, 2...} be a bijection as before.
We first claim that

∑
n aσ(n) is also absolutely convergent.

Let ε > 0. Since
∑

n |an| <∞, there is a positive integer N such that

|aN+1|+ · · · · · · · · ·+ |aN+p| < ε · · · · · · · · · (∗)
for all p = 1, 2.... Notice that since σ is a bijection, we can find a positive integer M such that
M > max{j : 1 ≤ σ(j) ≤ N}. Then σ(i) ≥ N if i ≥ M . This together with (∗) imply that if i ≥ M
and p ∈ N, we have

|aσ(i+1)|+ · · · · · · · · · |aσ(i+p)| < ε.

Thus the series
∑

n aσ(n) is absolutely convergent by the Cauchy criteria.
Finally we claim that

∑
n an =

∑
n aσ(n). Put l =

∑
n an and l′ =

∑
n aσ(n). Now let ε > 0. Then

there is N ∈ N such that

|l −
N∑
n=1

an| < ε and |aN+1|+ · · · · · ·+ |aN+p| < ε · · · · · · · · · (∗∗)

for all p ∈ N. Now choose a positive integer M large enough so that {1, ..., N} ⊆ {σ(1), ..., σ(M)} and

|l′ −
M∑
i=1

aσ(i)| < ε. Notice that since we have {1, ..., N} ⊆ {σ(1), ..., σ(M)}, the condition (∗∗) gives

|
N∑
n=1

an −
M∑
i=1

aσ(i)| ≤
∑

N<i<∞
|ai| ≤ ε.

We can now conclude that

|l − l′| ≤ |l −
N∑
n=1

an|+ |
N∑
n=1

an −
M∑
i=1

aσ(i)|+ |
M∑
i=1

aσ(i) − l′| ≤ 3ε.

The proof is complete. �

6. Power series

Throughout this section, let

f(x) =

∞∑
i=0

aix
i · · · · · · · · · · · · (∗)

denote a formal power series, where ai ∈ R.

Lemma 6.1. Suppose that there is c ∈ R with c 6= 0 such that f(c) is convergent. Then

(i) : f(x) is absolutely convergent for all x with |x| < |c|.
(ii) : f converges uniformly on [−η, η] for any 0 < η < |c|.
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Proof. For Part (i), note that since f(c) is convergent, then lim anc
n = 0. So there is a positive integer

N such that |ancn| ≤ 1 for all n ≥ N . Now if we fix |x| < |c|, then |x/c| < 1. Therefore, we have

∞∑
n=1

|an||xn| ≤
N−1∑
n=1

|an||xn|+
∑
n≥N
|ancn||x/c|n ≤

N−1∑
n=1

|an||xn|+
∑
n≥N
|x/c|n <∞.

So Part (i) follows.
Now for Part (ii), if we fix 0 < η < |c| ,then |anxn| ≤ |anη|n for all n and for all x ∈ [−η, η]. On the
other hand, we have

∑
n |anηn| <∞ by Part (i). So f converges uniformly on [−η, η] by the M -test.

The proof is finished. �

Remark 6.2. In Lemma 11.9(ii), notice that if f(c) is convergent, it does not imply f converges
uniformly on [−c, c] in general.

For example, f(x) := 1 +

∞∑
n=1

xn

n
. Then f(−1) is convergent but f(1) is divergent.

Definition 6.3. Call the set dom f := {x ∈ R : f(c) is convergent } the domain of convergence of f
for convenience. Let 0 ≤ r := sup{|c| : c ∈ dom f} ≤ ∞. Then r is called the radius of convergence
of f .

Remark 6.4. Notice that by Lemma 11.9, then the domain of convergence of f must be the interval
with the end points ±r if 0 < r <∞.
When r = 0, then dom f = {0}.
Finally, if r =∞, then dom f = R.

Example 6.5. If f(x) =
∑∞

n=0 n!xn, then r = (0). In fact, notice that if we fix a non-zero number
x and consider limn |(n + 1)!xn+1|/|n!xn| = ∞, then by the ratio test f(x) must be divergent for any
x 6= 0. So r = 0 and dom f = (0).

Example 6.6. Let f(x) = 1 +
∑∞

n=1 x
n/nn. Notice that we have limn |xn/nn|1/n = 0 for all x. So

the root test implies that f(x) is convergent for all x and then r =∞ and dom f = R.

Example 6.7. Let f(x) = 1 +
∑∞

n=1 x
n/n. Then limn |xn+1/(n + 1)| · |n/xn| = |x| for all x 6= 0.

So by the ration test, we see that if |x| < 1, then f(x) is convergent and if |x| > 1, then f(x) is
divergent. So r = 1. Also, it is known that f(1) is divergent but f(−1) is divergent. Therefore, we
have dom f = [−1, 1).

Example 6.8. Let f(x) =
∑
xn/n2. Then by using the same argument of Example 11.7, we have

r = 1. On the other hand, it is known that f(±1) both are convergent. So dom f = [−1, 1].

Lemma 6.9. With the notation as above, if r > 0, then f converges uniformly on (−η, η) for any
0 < η < r.

Proof. It follows from Lemma 11.1 at once. �

Remark 6.10. Note that the Example 11.7 shows us that f may not converge uniformly on (−r, r).
In fact let f be defined as in Example 11.7. Then f does not converges on (−1, 1). In fact, if we let
sn(x) =

∑∞
k=0 akx

k, then for any positive integer n and 0 < x < 1, we have

|s2n(x)− sn(x)| = xn+1

n+ 1
+ · · · · · ·+ xn

2n
.
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From this we see that if n is fixed, then |s2n(x)− sn(x)| → 1/2 as x→ 1−. So for each n, we can find
0 < x < 1 such that |s2n(x)− sn(x)| > 1

2 −
1
4 = 1

4 . Thus f does not converges uniformly on (−1, 1) by
the Cauchy Theorem.

Proposition 6.11. With the notation as above, let ` = lim |an|1/n or lim
|an+1|
|an|

provided it exists.

Then

r =


1
` if 0 < ` <∞;

0 if ` =∞;

∞ if ` = 0.

Proposition 6.12. With the notation as above if 0 < r ≤ ∞, then f ∈ C∞(−r, r). Moreover, the

k-derivatives f (k)(x) =
∑

n≥k akn(n− 1)(n− 2) · · · · · · (n− k + 1)xn−k for all x ∈ (−r, r).

Proof. Fix c ∈ (−r, r). By Lemma 11.9, one can choose 0 < η < r such that c ∈ (−η, η) and f
converges uniformly on (−η, η).

It needs to show that the k-derivatives f (k)(c) exists for all k ≥ 0. Consider the case k = 1 first.
If we consider the series

∑∞
n=0(anx

n)′ =
∑∞

n=1 nanx
n−1, then it also has the same radius r be-

cause limn |nan|1/n = limn |an|1/n. This implies that the series
∑∞

n=1 nanx
n−1 converges uniformly

on (−η, η). Therefore, the restriction f |(−η, η) is differentiable. In particular, f ′(c) exists and
f ′(c) =

∑∞
n=1 nanc

n−1.
So the result can be shown inductively on k. �

Proposition 6.13. With the notation as above, suppose that r > 0. Then we have∫ x

0
f(t)dt =

∞∑
n=0

∫ x

0
ant

ndt =
∞∑
0

1

n+ 1
anx

n+1

for all x ∈ (−r, r).

Proof. Fix 0 < x < r. Then by Lemma 11.9 f converges uniformly on [0, x]. Since each term ant
n is

continuous, the result follows. �

Theorem 6.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(−r)) exists.
Then f is continuous at x = r (resp. x = −r), that is lim

x→r−
f(x) = f(r).

Proof. Note that by considering f(−x), it suffices to show that the case x = r holds.
Assume r = 1.
Notice that if f converges uniformly on [0, 1], then f is continuous at x = 1 as desired.
Let ε > 0. Since f(1) is convergent, then there is a positive integer such that

|an+1 + · · · · · · · · ·+ an+p| < ε

for n ≥ N and for all p = 1, 2.... Note that for n ≥ N ; p = 1, 2... and x ∈ [0, 1], we have

(6.1)

sn+p(x)− sn(x) = an+1x
n+1 + an+2x

n+1 + an+3x
n+1 + · · · · · · · · ·+ an+px

n+1

+ an+2(x
n+2 − xn+1) + an+3(x

n+2 − xn+1) + · · · · · · · · ·+ an+p(x
n+2 − xn+1)

+ an+3(x
n+3 − xn+2) + · · · · · · · · ·+ an+p(x

n+3 − xn+2)

...

+ an+p(x
n+p − xn+p−1).
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Since x ∈ [0, 1], |xn+k+1 − xn+k| = xn+k − xn+k+1. So the Eq.11.1 implies that

|sn+p(x)−sn(x)| ≤ ε(xn+1+(xn+1−xn+2)+(xn+2−xn+3)+· · ·+(xn+p−1−xn+p)) = ε(2xn+1−xn+p) ≤ 2ε.

So f converges uniformly on [0, 1] as desired.

Finally for the general case, we consider g(x) := f(rx) =
∑

n anr
nxn. Note that limn |anrn|1/n = 1

and g(1) = f(r). Then by the case above,, we have shown that

f(r) = g(1) = lim
x→1−

g(x) = lim
x→r−

f(x).

The proof is finished. �

Remark 6.15. In Remark 11.10, we have seen that f may not converges uniformly on (−r, r). How-
ever, in the proof of Abel’s Theorem above, we have shown that if f(±r) both exist, then f converges
uniformly on [−r, r] in this case.

7. Real analytic functions

Proposition 7.1. Let f ∈ C∞(a, b) and c ∈ (a, b). Then for any x ∈ (a, b) \ {c} and for any n ∈ N,
there is ξ = ξ(x, n) between c and x such that

f(x) =

n∑
k=0

f (k)(c)

k!
(x− c)k +

∫ x

c

f (n+1)(t)

n!
(x− t)ndt

Call

∞∑
k=0

f (k)(c)

k!
(x− c)k (may not be convergent) the Taylor series of f at c.

Proof. It is easy to prove by induction on n and the integration by part. �

Definition 7.2. A real-valued function f defined on (a, b) is said to be real analytic if for each
c ∈ (a, b), one can find δ > 0 and a power series

∑∞
k=0 ak(x− c)k such that

f(x) =
∞∑
k=0

ak(x− c)k · · · · · · · · · (∗)

for all x ∈ (c− δ, c+ δ) ⊆ (a, b).

Remark 7.3.

(i) : Concerning about the definition of a real analytic function f , the expression (∗) above is
uniquely determined by f , that is, each coefficient ak’s is uniquely determined by f . In fact,
by Proposition 11.12, we have seen that f ∈ C∞(a, b) and

ak =
f (k)(c)

k!
· · · · · · · · · (∗∗)

for all k = 0, 1, 2, ....
(ii) : Although every real analytic function is C∞, the following example shows that the converse

does not hold.
Define a function f : R→ R by

f(x) =

{
e−1/x

2
if x 6= 0;

0 if x = 0.

One can directly check that f ∈ C∞(R) and f (k)(0) = 0 for all k = 0, 1, 2.... So if f is real
analytic, then there is δ > 0 such that ak = 0 for all k by the Eq.(∗∗) above and hence f(x) ≡ 0
for all x ∈ (−δ, δ). It is absurd.
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(iii) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is
similarly defined as in the real case. However, we always have: f is complex analytic if and
only if it is C∞.

Proposition 7.4. Suppose that f(x) :=
∑∞

k=0 ak(x−c)k is convergent on some open interval I centered
at c, that is I = (c− r, c+ r) for some r > 0. Then f is analytic on I.

Proof. We first note that f ∈ C∞(I). By considering the translation x− c, we may assume that c = 0.
Now fix z ∈ I. Now choose δ > 0 such that (z − δ, z + δ) ⊆ I. We are going to show that

f(x) =
∞∑
j=0

f (j)(z)

j!
(x− z)j .

for all x ∈ (z − δ, z + δ).
Notice that f(x) is absolutely convergent on I. This implies that

f(x) =
∞∑
k=0

ak(x− z + z)k

=

∞∑
k=0

ak

k∑
j=0

k(k − 1) · · · · · · (k − j + 1)

j!
(x− z)jzk−j

=
∞∑
j=0

(
∑
k≥j

k(k − 1) · · · · · · (k − j + 1)akz
k−j)

(x− z)j

j!

=
∞∑
j=0

f (j)(z)

j!
(x− z)j

for all x ∈ (z − δ, z + δ). The proof is finished. �

Example 7.5. Let α ∈ R. Recall that (1 + x)α is defined by eα ln(1+x) for x > −1.
Now for each k ∈ N, put (

α

k

)
=

{
α(α−1)······(α−k+1)

k! if k 6= 0;

1 if x = 0.

Then

f(x) := (1 + x)α =
∞∑
k=0

(
α

k

)
xk

whenever |x| < 1.
Consequently, f(x) is analytic on (−1, 1).

Proof. Notice that f (k)(x) = α(α− 1) · · · · · · (α− k + 1)(1 + x)α−k for |x| < 1.
Fix |x| < 1. Then by Proposition 12.1, for each positive integer n we have

f(x) =
n−1∑
k=0

f (k)(0)

k!
xk +

∫ x

0

f (n)(t)

(n− 1)!
(x− t)n−1dt

So by the mean value theorem for integrals, for each positive integer n, there is ξn between 0 and x
such that ∫ x

0

f (n)(t)

(n− 1)!
(x− t)n−1dt =

f (n)(ξn)

(n− 1)!
(x− ξn)n−1x
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Now write ξn = ηnx for some 0 < ηn < 1 and Rn(x) :=
f (n)(ξn)

(n− 1)!
(x− ξn)n−1x. Then

Rn(x) = (α−n+1)

(
α

n− 1

)
(1+ηnx)α−n(x−ηnx)n−1x = (α−n+1)

(
α

n− 1

)
xn(1+ηnx)α−1(

1− ηn
1 + ηnx

)n−1.

We need to show that Rn(x)→ 0 as n→∞, that is the Taylor series of f centered at 0 converges to

f . By the Ratio Test, it is easy to see that the series
∞∑
k=0

(α − k + 1)

(
α

k

)
yk is convergent as |y| < 1.

This tells us that lim
n
|(α− n+ 1)

(
α

n

)
xn| = 0.

On the other hand, note that we always have 0 < 1−ηn < 1 +ηnx for all n because x > −1. Thus, we
can now conclude that Rn(x)→ 0 as |x| < 1. The proof is finished. Finally the last assertion follows
from Proposition 12.4 at once. The proof is complete. �


