NOTE ON MATH2060B: ELEMENTARY ANALYSIS II (2020-21)

CHI-WAI LEUNG

1. Differentiation

Throughout this section, let I be an open interval (not necessarily bounded) and let f be a real-valued function defined on I.

Definition 1.1. Let $c \in I$. We say that f is differentiable at c if the following limit exists:

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}.$$

In this case, we write f'(c) for the above limit and we call it the derivative of f at c. We say that if f is differentiable on I if f'(x) exists for every point x in I.

Proposition 1.2. Let $c \in I$. Then f'(c) exists if and only if there is a function φ defined on I such that the function φ is continuous at c and

$$f(x) - f(c) = \varphi(x)(x - c)$$

for all $x \in I$.

In this case, $\varphi(c) = f'(c)$.

Proof. Assume that f'(c) exists. Define a function $\varphi: I \to \mathbb{R}$ by

$$\varphi(x) = \begin{cases} \frac{f(x) - f(c)}{x - c} & \text{if } x \neq c; \\ f'(c) & \text{if } x = c. \end{cases}$$

Clearly, we have $f(x) - f(c) = \varphi(x)(x - c)$ for all $x \in I$. We want to show that the function φ is continuous at c. In fact, let $\varepsilon > 0$, by the definition of the limit of a function, there is $\delta > 0$ such that

$$|f'(c) - \frac{f(x) - f(c)}{x - c}| < \varepsilon$$

whenever $x \in I$ with $0 < |x-c| < \delta$. Therefore, we have $|f'(c) - \varphi(x)| < \varepsilon$ as $x \in I$ with $0 < |x-c| < \delta$. Since $\varphi(c) = f'(c)$, we have $|f'(c) - \varphi(x)| < \varepsilon$ as $x \in I$ with $|x-c| < \delta$, hence the function φ is continuous at c as desired.

The converse is clear since $\varphi(x) = \frac{f(x) - f(c)}{x - c}$ if $x \neq c$. The proof is complete.

Proposition 1.3. Using the notation as above, if f is differentiable at c, then f is continuous at c.

Proof. By using Proposition 1.2, if f'(c) exists, then there is a function φ defined on I such that the function φ is continuous at c and we have $f(x) - f(c) = \varphi(x)(x - c)$ for all $x \in I$. This implies that $\lim_{x \to c} f(x) = f(c)$, so f is continuous at c as desired.

Remark 1.4. In general, the converse of Proposition 1.3 does not hold, for example, the function f(x) := |x| is a continuous function on \mathbb{R} but f'(0) does not exist.

Date: April 16, 2021.

Proposition 1.5. Let f and g be the functions defined on I. Assume that f and g both are differentiable at $c \in I$. We have the following assertions.

- (i) (f+g)'(c) exists and (f+g)'(c) = f'(c) + g'(c).
- (ii) The product $(f \cdot g)'(c)$ exists and $(f \cdot g)'(c) = f'(c)g(c) + f(c)g'(c)$.
- (iii) If $g(c) \neq 0$, then we have $(\frac{f}{g})'(c)$ exists and $(\frac{f}{g})'(c) = \frac{f'(c)g(c) f(c)g'(c)}{g(c)^2}$.

Proof. Part (i) clearly follows from the definition of the limit of a function. For showing Part (ii), note that we have

$$\frac{f(x)g(x) - f(c)g(c)}{x - c} = \frac{f(x) - f(c)}{x - c}g(x) + f(c)\frac{g(x) - g(c)}{x - c}$$

for all $x \in I$ with $x \neq c$. From this, together with Proposition 1.3, Part (ii) follows.

For Part (iii), by using Part (ii), it suffices to show that $(\frac{1}{g})'(c) = -\frac{g'(c)}{g(c)^2}$. In fact, g'(c) exists, so g is continuous at c. Since $g(c) \neq 0$, there is $\delta_1 > 0$ so that $g(x) \neq 0$ for all $x \in I$ with $|x - c| < \delta_1$. Then we have

$$\frac{1}{x-c}(\frac{1}{g(x)} - \frac{1}{g(c)}) = \frac{1}{x-c}(\frac{g(c) - g(x)}{g(x)g(c)})$$

for all $x \in I$ with $0 < |x - c| < \delta_1$. By taking $x \to c$, we see that $(\frac{1}{g})'(c)$ exists and $(\frac{1}{g})'(c) = \frac{-g'(c)}{g(c)^2}$. The proof is complete.

Proposition 1.6. (Chain Rule): Let f, g be functions defined on \mathbb{R} . Let d = f(c) for some $c \in \mathbb{R}$. Suppose that f'(c) and g'(d) exist. Then the derivative of composition $(g \circ f)'(c)$ exists and $(g \circ f)'(c) = g'(d)f'(c)$.

Proof. By using Proposition 1.2, we want to find a function $\varphi: \mathbb{R} \to \mathbb{R}$ such that

$$g \circ f(x) - g \circ f(c) = \varphi(x)(x - c)$$

for all $x \in \mathbb{R}$ and the function $\varphi(x)$ is continuous at c, and so $(g \circ f)'(c) = \varphi(c)$.

Let y = f(x). By using Proposition 1.2 again, there is a function and $\beta(y)$ so that $g(y) - g(d) = \beta(y)(y-d)$ for all $y \in \mathbb{R}$ and $\beta(y)$ is continuous at d. Similarly, there is a function $\alpha(x)$ we have $f(x) - f(c) = \alpha(x)(x-c)$ for all $x \in \mathbb{R}$ and $\alpha(x)$ is continuous at c. These two equations imply that

$$g \circ f(x) - g \circ f(c) = \beta(f(x))(f(x) - f(c)) = \beta(f(x))\alpha(x)(x - c)$$

for all $x \in \mathbb{R}$. Let $\varphi(x) := \beta(f(x)) \cdot \alpha(x)$ for $x \in \mathbb{R}$. Since $\beta(d) = g'(d)$ and $\alpha(c) = f'(c)$, we see that $\varphi(c) = \beta(f(c))\alpha(c) = g'(d)f'(c)$. It remains to show that the function φ is continuous at c. In fact, f'(c) exists, so f is continuous at c, and hence the composition $\beta \circ f(x)$ is continuous at c. In addition, the function α is continuous at c. Therefore, the function $\varphi := (\beta \circ f) \cdot \alpha$ is continuous at c, and so $(g \circ f)'(c)$ exists with $(g \circ f)'(c) = \varphi(c) = g'(d)f'(c)$. The proof is complete.

Proposition 1.7. Let I and J be open intervals. Let f be a strictly increasing function from I onto J. Let d = f(c) for $c \in I$. Assume that f'(c) exists and the inverse of f, write $g := f^{-1}$, is continuous at d. If $f'(c) \neq 0$, then g'(d) exists and $g'(d) = \frac{1}{f'(c)}$.

Proof. Let y = f(x). Note that by using Proposition 1.2, there is a function F on I such that f(x) - f(c) = F(x)(x - c) for all $x \in I$ and F is continuous at c with $F(c) = f'(c) \neq 0$. F is continuous at c, so there are open intervals I_1 and J_1 such that $c \in I_1 \subseteq I$ and $d \in f(I_1) = J_1$, moreover, $F(x) \neq 0$ for all $x \in I_1$. Note that since f(x) - f(c) = F(x)(x - c), we have y - d = f(g(y)) - f(g(c)) = F(g(y))(g(y) - g(d)) for all $y \in J_1$. Since $F(x) \neq 0$ for all $x \in I_1$, we have $g(y) - g(d) = F(g(y))^{-1}(y - d)$ for all $y \in J_1$. Note that the function $F(g(y))^{-1}$ is continuous at d. Thus, g'(d) exists and $g'(d) = F(g(d))^{-1} = \frac{1}{f'(c)}$ as desired.

Definition 1.8. Let D be a non-empty subset of \mathbb{R} and let g be a real-valued function defined on D.

- (i) We say that g has an absolute maximum (resp. absolute minimum) at a point $c \in D$ if $g(c) \ge g(x)$ (resp. $g(c) \le g(x)$) for all $x \in D$. In this case, c is called an absolute extreme point of g.
- (ii) We say that g has a local maximum (resp. local minimum) at a point $c \in D$ if there is r > 0 such that $(c r, c + r) \subseteq D$ and $g(c) \ge g(x)$ (resp. $g(c) \le g(x)$) for all $x \in (c r, c + r)$. In this case, c is called a local extreme point of g.

Remark 1.9. Note that an absolute extreme point of a function g need not be a local extreme point, for example if g(x) := x for $x \in [0,1]$, then g has an absolute maximum point at x = 1 of g but 1 is not a local maximum point of g.

Proposition 1.10. Let I be an open interval and let f be a function on I. Assume that f has a local extreme point at $c \in I$ and f'(c) exists. Then f'(c) = 0.

Proof. Without lost the generality, we may assume that f has local minimum at c. Then there is r > 0 such that $f(x) \ge f(c)$ for $x \in (c-r,c+r) \subseteq I$. Since f'(c) exists, by using Proposition 1.2, there is a function φ defined on I such that $f(x) - f(c) = \varphi(x)(x-c)$ for all $x \in I$ and φ is continuous at c with $\varphi(c) = f'(c)$. Thus, we have $\varphi(x)(x-c) \ge 0$ for all $x \in (c-r,c+r)$. From this we see that $\varphi(x) \ge 0$ as $x \in (c,c+r)$, similarly, $\varphi(x) \le 0$ as $x \in (c-r,c)$. The function φ is continuous at c, so $\varphi(c) = 0$ and hence $f'(c) = \varphi(c) = 0$ as desired.

Proposition 1.11. Rolle's Theorem: Let $f : [a,b] \to \mathbb{R}$ be a continuous function. Assume that f'(x) exists for all $x \in (a,b)$ and f(a) = f(b). Then there is a point $c \in (a,b)$ such that f'(c) = 0.

Proof. Recall a fact that every continuous function defined a compact attains absolute points, that is, there are c_1 and c_2 such that $f(c_1) = \min_{x \in [a,b]} f(x)$ and $f(c_2) = \max_{x \in [a,b]} f(x)$, hence, $f(c_1) \le f(x) \le f(c_2)$ for all $x \in [a,b]$. If $f(c_1) = f(c_2)$, then $f(x) \equiv f(c_1) = f(c_2)$ for all $x \in [a,b]$, so $f'(x) \equiv 0$ for all $x \in (a,b)$.

Otherwise, suppose that $f(c_1) < f(c_2)$. Since f(a) = f(b), we have $c_1 \in (a,b)$ or $c_2 \in (a,b)$. We may assume that $c_1 \in (a,b)$. Then $x = c_1$ is a local minimum point of f. Therefore, $f'(c_1) = 0$ by using Proposition 1.10.

Theorem 1.12. Main Value Theorem: If $f : [a,b] \to \mathbb{R}$ is a continuous function and is differentiable on (a,b), then there is a point $c \in (a,b)$ such that f(b) - f(a) = f'(c)(b-a).

Proof. Define a function $\varphi:[a,b]\to\mathbb{R}$ by

$$\varphi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$$

for $x \in [a, b]$. Note that the function φ is continuous on [a, b] with $\varphi(a) = \varphi(b) = 0$, in addition, $\varphi'(x)$ exists for all $x \in (a, b)$. The Rolle's Theorem implies that there is a point $c \in (a, b)$ such that

$$0 = \varphi'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}.$$

The proof is complete.

Corollary 1.13. Assume that $f : [a,b] \to \mathbb{R}$ is a continuous function and is differentiable on (a,b). If $f' \equiv 0$ on (a,b), then f is a constant function.

Proof. Fix any point $z \in (a, b)$. Let $x \in (z, b]$. By using the Mean Value Theorem, there is a point $c \in (z, x)$ such that f(x) - f(z) = f'(c)(x - z). If $f' \equiv 0$ on (a, b), so f(x) = f(z) for all $x \in [z, b]$. Similarly, we have f(x) = f(z) for all $x \in [a, z]$. The proof is complete.

Definition 1.14. We call a function f is a C^1 -function on I if f'(x) exists and continuous on I. In addition, we define the n-derivatives of f by $f^{(n)}(x) := f^{(n-1)}(x)$ for $n \ge 2$, provided it exists. In this case, we say that f is a C^n -function on I. In particular, we call f a C^{∞} -function (or smooth function) if f is a C^n -function for all n = 1, 2...

For example, the exponential function $\exp x$ is a very important example of smooth function on \mathbb{R} .

Corollary 1.15. Inverse Mapping Theorem: Let f be a C^1 -function on an open interval I and let $c \in I$. Assume that $f'(c) \neq 0$. Then there is r > 0 such that the function f is a strictly monotone function on $(c-r,c+r) \subseteq I$. If we let J := f(c-r,c+r), then the inverse function $g := f^{-1}: J \to (c-r,c+r)$ is also a C^1 -function.

Proof. We may assume that f'(c) > 0. f'(x) is continuous on I, so there is r > 0 such that f'(x) > 0 for all $x \in (c-r,c+r) \subseteq I$. For any x_1 and x_2 in (c-r,c+r) with $x_1 < x_2$, by using the Mean Value Theorem, we have $f(x_2) - f(x_1) = f'(v)(x_2 - x_1)$ for some $v \in (x_1,x_2)$, and hence $f(x_2) > f(x_1)$. Therefore the restriction of f on (c-r,c+r) is a strictly increasing function, thus, it is an injection. Let J := f((c-r,c+r)). Then J is an interval by the Immediate Value Theorem. Moreover, J is an open interval because f is strictly increasing. Also, if we let $g = f^{-1}$ on J, then g is continuous on J due to the fact that every continuous bijection on a compact set is a homeomorphism. Therefore, by Proposition 1.7, we see that g'(y) exists on J and $g'(y) = \frac{1}{f'(x)}$ for y = f(x) and $x \in (c-r,c+r)$. Therefore, g is a C^1 function on J. The proof is complete.

Proposition 1.16. Cauchy Mean Value Theorem: Let $f, g : [a, b] \to \mathbb{R}$ be continuous functions with $g(a) \neq g(b)$. Assume that f, g are differentiable functions on (a, b) and $g'(x) \neq 0$ for all $x \in (a, b)$. Then there is a point $c \in (a, b)$ such that $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$.

Proof. Define a function ψ on [a,b] by $\psi(x)=f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a))$ for $x\in[a,b]$. Then by using the similar argument as in the Mean Value Theorem, the result follows.

Theorem 1.17. Lagrange Remainder Theorem: Let f be a $C^{(n+1)}$ function defined on (a,b). Let $x_0 \in (a,b)$. Then for each $x \in (a,b)$, there is a point c between x_0 and x such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$

Proof. We may assume that $x_0 < x < b$. Case: We first assume that $f^{(k)}(x_0) = 0$ for all k = 0, 1, ..., n. Put $g(t) = (t - x_0)^{n+1}$ for $t \in [x_0, x]$. Then $g'(t) = (n+1)(t - x_0)^n$ and $g(x_0) = 0$. Then by the Cauchy Mean Value Theorem, there is $x_1 \in (x_0, x)$ such that $\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(x_1)}{g'(x_1)}$. Using the same step for f' and g' on $[x_0, x_1]$, there is $x_2 \in (x_0, x_1)$ such that $\frac{f'(x_1)}{g'(x_1)} = \frac{f'(x_1) - f'(x_0)}{g'(x_1) - g'(x_0)} = \frac{f^{(2)}(x_2)}{g(2)(x_2)}$. To repeat the same step, there are $x_1, x_2, ..., x_{n+1}$ in (a, b) such that $x_k \in (x_0, x_{k-1})$ for k = 1, 2, ..., n+1 and

$$\frac{f(x)}{g(x)} = \frac{f'(x_1)}{g'(x_1)} = \dots = \frac{f^{(n+1)}(x_{n+1})}{g^{(n+1)}(x_{n+1})}.$$

In addition, note that $g^{n+1}(x_{n+1}) = (n+1)!$. Therefore, we have $\frac{f(x)}{g(x)} = \frac{f^{(n+1)}(x_{n+1})}{(n+1)!}$, and hence $f(x) = \frac{f^{(n+1)}(x_{n+1})}{(n+1)!}(x-x_0)^{n+1}$. Note $x_{n+1} \in (x_0, x)$ and thus, the result holds for this case.

For the general case, put $G(x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$ for $x \in (a, b)$. Note that we have $G(x_0) = G'(x_0) = \cdots = G^{(n)}(x_0) = 0$. Then by the Claim above, there is a point $c \in (x_0, x)$ such that $G(x) = \frac{G^{(n+1)}(c)}{(n+1)!}$. Since $G^{(n+1)}(c) = f^{(n+1)}(c)$, $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!}$. The proof is complete.

Example 1.18. Recall that the exponential function e^x is defined by

$$e^x := \sum_{k=0}^{\infty} \frac{x^k}{k!} := \lim_{n \to \infty} \sum_{k=0}^n \frac{x^k}{k!}$$

for $x \in \mathbb{R}$. Note that the above limit always exists for all $x \in \mathbb{R}$ (shown in the last chapter). Show that the natural base e is an irrational number.

Put $f(x) := e^x$ for $x \in \mathbb{R}$. It is a known fact f is a C^{∞} function and $f^{(n)}(x) = e^x$ for all $x \in \mathbb{R}$. Fix any x > 0. Then by the Lagrange Theorem, for each positive integer n, there is $c_n \in (0, x)$ such that

$$f(x) = \sum_{k=0}^{n} \frac{x^k}{k!} + \frac{e^{c_n}}{(n+1)!} x^{n+1}.$$

In particular, taking x = 1, we have

$$0 < \frac{e^{c_n}}{(n+1)!} = e - \sum_{k=0}^{n} \frac{1}{k!} < \frac{3}{(n+1)!}$$

for all positive integer n. Now if e = p/q for some positive integers p and q, and thus, we have

$$0 < \frac{p}{q} - \sum_{k=0}^{n} \frac{1}{k!} < \frac{3}{(n+1)!}$$

for all n = 1, 2... Now we can choose n large enough such that $(n!)^{\frac{p}{q}} \in \mathbb{N}$. It leads to a contradiction because we have

$$0 < (n!)\frac{p}{q} - (n!)\sum_{k=0}^{n} \frac{1}{k!} < \frac{3(n!)}{(n+1)!} = \frac{3}{n+1} < 1.$$

Therefore, e is irrational.

Proposition 1.19. Let f be a C^2 function on an open interval I and $x_0 \in I$. Assume that $f'(x_0) = 0$. Then f has local maximum (resp. local minimum) at x_0 if $f^{(2)}(x_0) < 0$ (resp. $f^{(2)}(x_0) > 0$).

Proof. We assume that $f^{(2)}(x_0) > 0$. We want to show that x_0 is a local minimum point of f. The proof of another case is similar. Note that for any $x \in I \setminus \{x_0\}$. Then by the Lagrange Theorem, there is a point c between x_0 and x such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f^{(2)}(x_0)(x - x_0)^2 = f(x_0) + \frac{1}{2}f^{(2)}(x_0)(x - x_0)^2.$$

 $f^{(2)}$ is continuous at x_0 and $f^{(2)}(x_0) > 0$, and so there is r > 0 such that $f^{(2)}(x) > 0$ for all $x \in (x_0 - r, x_0 + r) \subseteq I$. Therefore, we have

$$f(x) = f(x_0) + \frac{1}{2}f^{(2)}(x)(x - x_0)^2 \ge f(x_0)$$

for all $x \in (x_0 - r, x_0 + r)$ and thus, x_0 is a local minimum point of f as desired.

Proposition 1.20. L'Hospital's Rule: Let f and g be the differentiable functions on (a,b) and let $c \in (a,b)$ Assume that f(c) = g(c) = 0, in addition, $g'(x) \neq 0$ and $g(x) \neq 0$ for all $x \in (a,b) \setminus \{c\}$. If the limit $L := \lim_{x \to c} \frac{f'(x)}{g'(x)}$ exists, then so does $\lim_{x \to c} \frac{f(x)}{g(x)}$, moreover, we have $L = \lim_{x \to c} \frac{f(x)}{g(x)}$.

Proof. Fix c < x < b. Then by the Cauchy Mean Value Theorem, there is a point $x_1 \in (c, x)$ such that

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(c)}{g(x) - g(c)} = \frac{f'(x_1)}{g'(x_1)}$$

 $x_1 \in (c,x)$, so if $L := \lim_{x \to c} \frac{f'(x)}{g'(x)}$ exists, then $\lim_{x \to c+} \frac{f(x)}{g(x)}$ exists and is equal to L.

Similarly, we also have $\lim_{x\to c-}\frac{f(x)}{g(x)}=L$. The proof is finished.

Proposition 1.21. Let f be a function on (a,b) and let $c \in (a,b)$.

(i) If f'(c) exists, then the following limit exists (also called the symmetric derivatives of f at c):

$$f'(c) = \lim_{t \to 0} \frac{f(c+t) - f(c-t)}{2t}.$$

(ii) If $f^{(2)}(c)$ exists, then

$$f^{(2)}(c) = \lim_{t \to 0} \frac{f(c+t) - 2f(c) + f(c-t)}{t^2}.$$

Proof. For showing (i), note that we have

$$f'(c) = \lim_{t \to 0+} \frac{f(c+t) - f(c)}{t} = \lim_{t \to 0-} \frac{f(c+t) - f(c)}{t}.$$

Putting t = -s into the second equality above, we see that

$$f'(c) = \lim_{s \to 0+} \frac{f(c-s) - f(c)}{-s}$$

To sum up the two equations above, we have

$$f'(c) = \lim_{t \to 0+} \frac{f(c+t) - f(c-t)}{2t}.$$

Similarly, we have $f'(c) = \lim_{t\to 0-} \frac{f(c+t)-f(c-t)}{2t}$. Part (i) follows.

For showing Part (ii), let h(t) := f(c+t) - 2f(c) + f(c-t) for $t \in \mathbb{R}$. Then h(0) = 0 and h'(t) = f'(c+t) - f'(c-t). By using the L'Hospital's Rule and Part (i), we have

$$\lim_{t \to 0} \frac{f(c+t) - 2f(c) + f(c-t)}{t^2} = \lim_{t \to 0} \frac{h'(t)}{(t^2)'} = \lim_{t \to 0} \frac{f'(c+t) - f'(c-t)}{2t} = f^{(2)}(c).$$

The proof is complete.

Definition 1.22. A function f defined on (a,b) is said to be convex if for any pair $a < x_1 < x_2 < b$, we have

$$f((1-t)x_1 + tx_2) \le (1-t)f(x_1) + tf(x_2)$$

for all $t \in [0, 1]$.

Proposition 1.23. Let f be a C^2 function on (a,b). Then f is a convex function if and only if $f^{(2)}(x) \geq 0$ for all $x \in (a,b)$.

Proof. For showing (\Rightarrow): assume that f is a convex function. Fix a point $c \in (a,b)$. f is convex, so we have $f(c) = f(\frac{1}{2}(c+t) + \frac{1}{2}(c-t)) \le \frac{1}{2}f(c+t) + \frac{1}{2}f(c-t)$ for all $t \in \mathbb{R}$ with $c \pm t \in (a,b)$. By Proposition 1.21, we have

$$f^{(2)}(c) = \lim_{t \to 0} \frac{f(c+t) - 2f(c) + f(c-t)}{t^2}.$$

Therefore, we have $f^{(2)}(c) \ge 0$.

For (\Leftarrow) , assume that $f^{(2)}(x) \ge 0$ for all $x \in (a,b)$. Fix $a < x_1 < x_2 < b$ and $t \in [0,1]$. Let $c := (1-t)x_1 + tx_2$. Then by the Lagrange Reminder Theorem, there are points $z_1 \in (x_1,c)$ and $z_2 \in (c,x_2)$ such that

$$f(x_2) = f(c) + f'(c)(x_2 - c) + \frac{1}{2}f^{(2)}(z_2)(x_2 - c)^2$$

and

$$f(x_1) = f(c) + f'(c)(x_1 - c) + \frac{1}{2}f^{(2)}(z_1)(x_1 - c)^2.$$

These two equations implies that

$$(1-t)f(x_1) + tf(x_2) = f(c) + (1-t)\frac{1}{2}f^{(2)}(z_1)(x_1-c)^2 + t\frac{1}{2}f^{(2)}(z_2)(x_2-c)^2 \ge f(c).$$

since $f^{(2)}(z_1)$ and $f^{(2)}(z_2)$ both are non-negative. Thus, f is convex.

Corollary 1.24. Let p > 0. The function $f(x) := x^p$ is convex on $(0, \infty)$ if and only if $p \ge 1$.

Proof. Note that $f^{(2)}(x) = p(p-1)x^{p-2}$ for all x > 0. Then the result follows immediately from Proposition 1.23.

Proposition 1.25. Netwon's Method: Let f be a continuous real-valued function defined on [a,b] with f(a) < 0 < f(b) and f(z) = 0 for some $z \in (a,b)$. Assume that f is a C^2 function on (a,b) and $f'(x) \neq 0$ for all $x \in (a,b)$. Then there is $\delta > 0$ with $J := [z - \delta, z + \delta] \subseteq [a,b]$ which have the following property:

if we fix any $x_1 \in J$ and let

(1.1)
$$x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)}$$

for n = 1, 2, ..., then we have $z = \lim x_n$.

Proof. We first choose r > 0 such that $[z - r, z + r] \subseteq (a, b)$. We fix any point $x_1 \in (z - r, z + r)$ with $x_1 \neq z$. Then by the Lagrange Remainder Theorem, there is a point ξ between z and x_1 such that

$$0 = f(z) = f(x_1) + f'(x_1)(z - x_1) + \frac{1}{2}f^{(2)}(\xi)(z - x_1)^2.$$

This, together with Eq 1.1 above, we have

$$x_2 - x_1 = -\frac{f(x_1)}{f'(x_1)} = z - x_1 + \frac{f^{(2)}(\xi)}{2f'(x_1)}(z - x_1)^2.$$

Therefore, we have

(1.2)
$$x_2 - z = \frac{f^{(2)}(\xi)}{2f'(x_1)}(z - x_1)^2.$$

Note that the functions f'(x) and $f^{(2)}(x)$ are continuous on [z-r,z+r] and $f'(x) \neq 0$, hence, there is M>0 such that $|\frac{f^{(2)}(u)}{2f'(v)}| \leq M$ for all $u,v \in [z-r,z+r]$. Then the Eq 1.2 implies that

(1.3)
$$|x_2 - z| = \left| \frac{f^{(2)}(\xi)}{2f'(x_1)} (z - x_1)^2 \right| \le M(z - x_1)^2.$$

Choose $\delta > 0$ such that $M\delta < 1$ and $J := [z - \delta, z + \delta] \subseteq (z - r, z + r)$. Note that Now we take any $x_1 \in J$. Eq 1.3 implies that $|x_2 - z| \le M \cdot |z - x_1|^2 \le (M\delta) \cdot |x_1 - z| < \delta$. By using Eq 1.1 inductively, we have a sequence (x_n) in J such that

$$|x_{n+1} - z| \le M \cdot |z - x_n|^2 \le (M\delta) \cdot |x_n - z|$$

for all n = 1, 2... Therefore, we have

$$|x_{n+1} - z| \le (M\delta)^n \cdot |x_1 - z|$$

for all n = 1, 2..., thus, $\lim x_n = z$. The proof is complete.

2. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

- (i): All functions f, g, h... are bounded real valued functions defined on [a, b] and $m \leq f \leq M$ on [a, b].
- (ii): Let $P: a = x_0 < x_1 < \dots < x_n = b$ denote a partition on [a, b]; Put $\Delta x_i = x_i x_{i-1}$ and $||P|| = \max \Delta x_i$.
- (iii): $M_i(f, P) := \sup\{f(x) : x \in [x_{i-1}, x_i]; m_i(f, P) := \inf\{f(x) : x \in [x_{i-1}, x_i]\}.$ Set $\omega_i(f, P) = M_i(f, P) - m_i(f, P).$
- (iv): (the upper sum of f): $U(f, P) := \sum M_i(f, P) \Delta x_i$ (the lower sum of f). $L(f, P) := \sum m_i(f, P) \Delta x_i$.

Remark 2.1. It is clear that for any partition on [a, b], we always have

- (i) $m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$.
- (ii) L(-f, P) = -U(f, P) and U(-f, P) = -L(f, P).

The following lemma is the critical step in this section.

Lemma 2.2. Let P and Q be the partitions on [a,b]. We have the following assertions.

- (i) If $P \subseteq Q$, then $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$.
- (ii) We always have $L(f, P) \leq U(f, Q)$.

Proof. For Part (i), we first claim that $L(f,P) \leq L(f,Q)$ if $P \subseteq Q$. By using the induction on l := #Q - #P, it suffices to show that $L(f,P) \leq L(f,Q)$ as l = 1. Let $P : a = x_0 < x_1 < \cdots < x_n = b$ and $Q = P \cup \{c\}$. Then $c \in (x_{s-1},x_s)$ for some s. Notice that we have

$$m_s(f, P) \le \min\{m_s(f, Q), m_{s+1}(f, Q)\}.$$

So, we have

$$m_s(f, P)(x_s - x_{s-1}) \le m_s(f, Q)(c - x_{s-1}) + m_{s+1}(f, Q)(x_s - c).$$

This gives the following inequality as desired.

$$(2.1) L(f,Q) - L(f,P) = m_s(f,Q)(c - x_{s-1}) + m_{s+1}(f,Q)(x_s - c) - m_s(f,P)(x_s - x_{s-1}) \ge 0.$$

Now by considering -f in the Inequality 2.1 above, we see that $U(f,Q) \leq U(f,P)$.

For Part (ii), let P and Q be any pair of partitions on [a,b]. Notice that $P \cup Q$ is also a partition on [a,b] with $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$. So, Part (i) implies that

$$L(f, P) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, Q).$$

The proof is complete.

The following notion plays an important role in this chapter.

Definition 2.3. Let f be a bounded function on [a,b]. The upper integral (resp. lower integral) of f over [a,b], write $\overline{\int_a^b} f$ (resp. $\int_a^b f$), is defined by

$$\overline{\int_a^b} f = \inf\{U(f, P) : P \text{ is a partation on } [a, b]\}.$$

(resp.

$$\int_a^b f = \sup\{L(f,P): P \text{ is a partation on } [a,b]\}.)$$

Notice that the upper integral and lower integral of f must exist by Remark 2.1.

Remark 2.4. Appendix: We call a partially set (I, \leq) a directed set if for each pair of elements i_1 and i_2 in I, there is $i_3 \in I$ such that $i_1 \leq i_3$ and $i_2 \leq i_3$.

A net in \mathbb{R} is a real-valued function f defined on a directed set I, write $f = (x_i)_{i \in I}$, where $x_i := f(i)$ for $i \in I$.

We say that a net (x_i) converges to a point $L \in \mathbb{R}$ (call a limit of (x_i)) if for any $\varepsilon > 0$, there is $i_0 \in I$ such that $|x_i - L| < \varepsilon$ for all $i \ge i_0$.

Using the similar argument as in the sequence case, a limit of (x_i) is unique if it exists and we write $\lim_{i} x_{i}$ for its limits.

Example 2.5. Appendix: Using the notation given as before, let

$$I := \{P : P \text{ is a partitation on } [a, b] \}.$$

We say that $P_1 \leq P_2$ for $P_1, P_2 \in I$ if $P_1 \subseteq P_2$. Clearly, I is a directed set with this order. If we put $u_P := U((f, P), \text{ then we have}$

$$\lim_{P} u_{P} = \overline{\int_{a}^{b}} f.$$

In fact, let $\varepsilon > 0$. Then by the definition of an upper integral, there is $P_0 \in I$ such that

$$\overline{\int_a^b} f \le U(f, P_0) \le \overline{\int_a^b} f + \varepsilon.$$

Lemma 2.2 tells us that whenever $P \in I$ with $P \geq P_0$, we have $U(f, P) \leq U(f, P_0)$. Thus we have $|u_P - \int_a^b f| < \varepsilon$ whenever $P \ge P_0$ as desired.

Proposition 2.6. Let f and g both are bounded functions on [a,b]. With the notation as above, we always have

$$\int_{a}^{b} f \le \overline{\int_{a}^{b}} f.$$

$$\begin{array}{ll}
(ii) \ \underline{\int_a^b}(-f) = -\overline{\int_a^b}f. \\
(iii)
\end{array}$$

$$\int_a^b f + \int_a^b g \le \int_a^b (f+g) \le \overline{\int_a^b} (f+g) \le \overline{\int_a^b} f + \overline{\int_a^b} g.$$

Proof. Part (i) follows from Lemma 2.2 at once.

Part (ii) is clearly obtained by L(-f, P) = -U(f, P).

For proving the inequality $\int_a^b f + \int_a^b g \leq \int_a^b (f+g) \leq f$ first. It is clear that we have $L(f,P) + L(g,P) \leq L(f+g,P)$ for all partitions P on [a,b]. Now let P_1 and P_2 be any partition on [a,b]. Then by Lemma 2.2, we have

$$L(f, P_1) + L(g, P_2) \le L(f, P_1 \cup P_2) + L(g, P_1 \cup P_2) \le L(f + g, P_1 \cup P_2) \le \int_a^b (f + g).$$

So, we have

As before, we consider -f and -g in the Inequality 2.2, we get $\overline{\int_a^b}(f+g) \leq \overline{\int_a^b}f + \overline{\int_a^b}g$ as desired. \Box

The following example shows the strict inequality in Proposition 2.6 (iii) may hold in general.

Example 2.7. Define a function $f, g : [0, 1] \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q}; \\ -1 & \text{otherwise.} \end{cases}$$

and

$$g(x) = \begin{cases} -1 & \text{if } x \in [0,1] \cap \mathbb{Q}; \\ 1 & \text{otherwise.} \end{cases}$$

Then it is easy to see that $f + g \equiv 0$ and

$$\overline{\int_{0}^{1}} f = \overline{\int_{0}^{1}} g = 1$$
 and $\int_{0}^{1} f = \int_{0}^{1} g = -1$.

So, we have

$$-2 = \int_{\underline{a}}^{\underline{b}} f + \int_{\underline{a}}^{\underline{b}} g < \int_{\underline{a}}^{\underline{b}} (f + g) = 0 = \overline{\int_{\underline{a}}^{\underline{b}}} (f + g) < \overline{\int_{\underline{a}}^{\underline{b}}} f + \overline{\int_{\underline{a}}^{\underline{b}}} g = 2.$$

We can now reaching the main definition in this chapter.

Definition 2.8. Let f be a bounded function on [a,b]. We say that f is Riemann integrable over [a,b] if $\overline{\int_b^a} f = \underline{\int_a^b} f$. In this case, we write $\int_a^b f$ for this common value and it is called the Riemann integral of f over [a,b].

Also, write R[a,b] for the class of Riemann integrable functions on [a,b].

Proposition 2.9. With the notation as above, R[a,b] is a vector space over \mathbb{R} and the integral

$$\int_{a}^{b} : f \in R[a, b] \mapsto \int_{a}^{b} f \in \mathbb{R}$$

defines a linear functional, that is, $\alpha f + \beta g \in R[a,b]$ and $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$ for all $f,g \in R[a,b]$ and $\alpha,\beta \in \mathbb{R}$.

Proof. Let $f,g\in R[a,b]$ and $\alpha,\beta\in\mathbb{R}$. Notice that if $\alpha\geq 0$, it is clear that $\overline{\int_a^b}\alpha f=\alpha\overline{\int_a^b}f=\alpha\int_a^b f=\alpha\int_a^b f=\alpha\int_a^$

The following result is the important characterization of a Riemann integrable function. Before showing this, we will use the following notation in the rest of this chapter.

For a partition $P: a = x_0 < x_1 < \cdots < x_n = b$ and $1 \le i \le n$, put

$$\omega_i(f, P) := \sup\{|f(x) - f(x')| : x, x' \in [x_{i-1}, x_i]\}.$$

It is easy to see that $U(f, P) - L(f, P) = \sum_{i=1}^{n} \omega_i(f, P) \Delta x_i$.

Theorem 2.10. Let f be a bounded function on [a,b]. Then $f \in R[a,b]$ if and only if for all $\varepsilon > 0$, there is a partition $P: a = x_0 < \cdots < x_n = b$ on [a,b] such that

(2.3)
$$0 \le U(f,P) - L(f,P) = \sum_{i=1}^{n} \omega_i(f,P) \Delta x_i < \varepsilon.$$

Proof. Suppose that $f \in R[a,b]$. Let $\varepsilon > 0$. Then by the definition of the upper integral and lower integral of f, we can find the partitions P and Q such that $U(f,P) < \overline{\int_a^b} f + \varepsilon$ and $\underline{\int_a^b} f - \varepsilon < L(f,Q)$. By considering the partition $P \cup Q$, we see that

$$\underline{\int_a^b} f - \varepsilon < L(f, Q) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, P) < \overline{\int_a^b} f + \varepsilon.$$

Since $\int_a^b f = \overline{\int_a^b} f$, we have $0 \le U(f, P \cup Q) - L(f, P \cup Q) < 2\varepsilon$. So, the partition $P \cup Q$ is as desired.

Conversely, let $\varepsilon > 0$, assume that the Inequality 2.3 above holds for some partition P. Notice that we have

$$L(f, P) \le \int_a^b f \le \overline{\int_a^b} f \le U(f, P).$$

So, we have $0 \le \overline{\int_a^b} f - \int_a^b f < \varepsilon$ for all $\varepsilon > 0$. The proof is finished.

Remark 2.11. Theorem 8.3 tells us that a bounded function f is Riemann integrable over [a,b] if and only if the "size" of the discontinuous set of f is arbitrary small.

Example 2.12. Let $f:[0,1] \to \mathbb{R}$ be the function defined by

$$f(x) = \begin{cases} \frac{1}{p} & \text{if } x = \frac{q}{p}, \text{ where } p, q \text{ are relatively prime positive integers;} \\ 0 & \text{otherwise.} \end{cases}$$

Then $f \in R[0,1]$.

(Notice that the set of all discontinuous points of f, say D, is just the set of all $(0,1] \cap \mathbb{Q}$. Since the set $(0,1] \cap \mathbb{Q}$ is countable, we can write $(0,1] \cap \mathbb{Q} = \{z_1, z_2,\}$. So, if we let m(D) be the "size" of the set D, then $m(D) = m(\bigcup_{i=1}^{\infty} \{z_i\}) = \sum_{i=1}^{\infty} m(\{z_i\}) = 0$, in here, you may think that the size of each set $\{z_i\}$ is 0.

Proof. Let $\varepsilon > 0$. By Theorem 8.3, it aims to find a partition P on [0,1] such that

$$U(f, P) - L(f, P) < \varepsilon$$
.

Notice that for $x \in [0,1]$ such that $f(x) \ge \varepsilon$ if and only if x = q/p for a pair of relatively prime positive integers p,q with $\frac{1}{p} \ge \varepsilon$. Since $1 \le q \le p$, there are only finitely many pairs of relatively prime positive integers p and q such that $f(\frac{q}{p}) \ge \varepsilon$. So, if we let $S := \{x \in [0,1] : f(x) \ge \varepsilon\}$, then S is a finite subset

of [0, 1]. Let L be the number of the elements in S. Then, for any partition $P: a = x_0 < \cdots < x_n = 1$, we have

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i = \left(\sum_{i: [x_{i-1}, x_i] \cap S = \emptyset} + \sum_{i: [x_{i-1}, x_i] \cap S \neq \emptyset}\right) \omega_i(f, P) \Delta x_i.$$

Notice that if $[x_{i-1}, x_i] \cap S = \emptyset$, then we have $\omega_i(f, P) \leq \varepsilon$ and thus

$$\sum_{i:[x_{i-1},x_i]\cap S=\emptyset} \omega_i(f,P)\Delta x_i \leq \varepsilon \sum_{i:[x_{i-1},x_i]\cap S=\emptyset} \Delta x_i \leq \varepsilon (1-0).$$

On the other hand, since there are at most 2L sub-intervals $[x_{i-1}, x_i]$ such that $[x_{i-1}, x_i] \cap S \neq \emptyset$ and $\omega_i(f, P) \leq 1$ for all i = 1, ..., n, so, we have

$$\sum_{i:[x_{i-1},x_i]\cap S\neq\emptyset} \omega_i(f,P)\Delta x_i \le 1 \cdot \sum_{i:[x_{i-1},x_i]\cap S\neq\emptyset} \Delta x_i \le 2L\|P\|.$$

We can now conclude that for any partition P, we have

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \le \varepsilon + 2L ||P||.$$

So, if we take a partition P with $||P|| < \varepsilon/(2L)$, then we have $\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \le 2\varepsilon$. The proof is finished.

Proposition 2.13. Let f be a function defined on [a,b]. If f is either monotone or continuous on [a,b], then $f \in R[a,b]$.

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing. Notice that for any partition $P: a = x_0 < \cdots < x_n = b$, we have $\omega_i(f, P) = f(x_i) - f(x_{i-1})$. So, if

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \Delta x_i < ||P|| \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = ||P|| (f(b) - f(a)) < \varepsilon(f(b) - f(a)).$$

Therefore, $f \in R[a, b]$ if f is monotone.

Suppose that f is continuous on [a, b]. Then f is uniform continuous on [a, b]. Then for any $\varepsilon > 0$, there is $\delta > 0$ such that $|f(x) - f(x')| < \varepsilon$ as $x, x' \in [a, b]$ with $|x - x'| < \delta$. So, if we choose a partition P with $||P|| < \delta$, then $\omega_i(f, P) < \varepsilon$ for all i. This implies that

$$\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \le \varepsilon \sum_{i=1}^{n} \Delta x_i = \varepsilon (b - a).$$

The proof is complete.

Proposition 2.14. We have the following assertions.

- (i) If $f, g \in R[a, b]$ with $f \leq g$, then $\int_a^b f \leq \int_a^b g$.
- (ii) If $f \in R[a,b]$, then the absolute valued function $|f| \in R[a,b]$. In this case, we have $|\int_a^b f| \le R[a,b]$

Proof. For Part $\underline{(i)}$, it is clear that we have the inequality $U(f,P) \leq U(g,P)$ for any partition P. So, we have $\int_a^b f = \int_a^b f \le \int_a^b g = \int_a^b g$. For Part (ii), the integrability of |f| follows immediately from Theorem 8.3 and the simple inequality

 $||f|(x') - |f|(x'')| \le |f(x') - f(x'')|$ for all $x', x'' \in [a, b]$. Thus, we have $U(|f|, P) - L(|f|, P) \le |f|(x'')$

U(f, P) - L(f, P) for any partition P on [a, b].

Finally, since we have $-f \leq |f| \leq f$, by Part (i), we have $|\int_a^b f| \leq \int_a^b |f|$ at once.

Proposition 2.15. Let a < c < b. We have $f \in R[a,b]$ if and only if the restrictions $f|_{[a,c]} \in R[a,c]$ and $f|_{[c,b]} \in R[c,b]$. In this case we have

(2.4)
$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Proof. Let $f_1 := f|_{[a,c]}$ and $f_2 := f|_{[c,b]}$. It is clear that we always have

$$U(f_1, P_1) - L(f_1, P_1) + U(f_2, P_2) - L(f_2, P_2) = U(P, f) - L(f, P)$$

for any partition P_1 on [a, c] and P_2 on [c, b] with $P = P_1 \cup P_2$.

From this, we can show the sufficient condition at once.

For showing the necessary condition, since $f \in R[a, b]$, for any $\varepsilon > 0$, there is a partition Q on [a, b] such that $U(f, Q) - L(f, Q) < \varepsilon$ by Theorem 8.3. Notice that there are partitions P_1 and P_2 on [a, c] and [c, b] respectively such that $P := Q \cup \{c\} = P_1 \cup P_2$. Thus, we have

$$U(f_1, P_1) - L(f_1, P_1) + U(f_2, P_2) - L(f_2, P_2) = U(f, P) - L(f, P) \le U(f, Q) - L(f, Q) < \varepsilon.$$

So, we have $f_1 \in R[a, c]$ and $f_2 \in R[c, b]$.

It remains to show the Equation 2.4 above. Notice that for any partition P_1 on [a, c] and P_2 on [c, b], we have

$$L(f_1, P_1) + L(f_2, P_2) = L(f, P_1 \cup P_2) \le \int_a^b f = \int_a^b f.$$

So, we have $\int_a^c f + \int_c^b f \leq \int_a^b f$. Then the inverse inequality can be obtained at once by considering the function -f. Then the resulted is obtained by using Theorem 8.3.

Proposition 2.16. Let f and g be Riemann integrable functions defined ion [a, b]. Then the pointwise product function $f \cdot g \in R[a, b]$.

Proof. We first show that the square function f^2 is Riemann integrable. In fact, if we let $M = \sup\{|f(x)| : x \in [a,b]\}$, then we have $\omega_k(f^2,P) \leq 2M\omega_k(f,P)$ for any partition $P: a = x_0 < \cdots < a_n = b$ because we always have $|f^2(x) - f^2(x')| \leq 2M|f(x) - f(x')|$ for all $x, x' \in [a,b]$. Then by Theorem 8.3, the square function $f^2 \in R[a,b]$.

This, together with the identity $f \cdot g = \frac{1}{2}((f+g)^2 - f^2 - g^2)$. The result follows.

Remark 2.17. In the proof of Proposition 2.16, we have shown that if $f \in R[a,b]$, then so is its square function f^2 . However, the converse does not hold. For example, if we consider f(x) = 1 for $x \in \mathbb{Q} \cap [0,1]$ and f(x) = -1 for $x \in \mathbb{Q}^c \cap [0,1]$, then $f \notin R[0,1]$ but $f^2 \equiv 1$ on [0,1].

Proposition 2.18. (Mean Value Theorem for Integrals)

Let f and g be the functions defined on [a,b]. Assume that f is continuous and g is a non-negative Riemann integrable function. Then, there is a point $\xi \in (a,b)$ such that

(2.5)
$$\int_a^b f(x)g(x)dx = f(\xi)\int_a^b g(x)dx.$$

Proof. By the continuity of f on [a,b], there exist two points x_1 and x_2 in [a,b] such that

$$f(x_1) = m := \min f(x)$$
; and $f(x_2) = M := \max f(x)$.

We may assume that $a \le x_1 < x_2 \le b$. From this, since $g \le 0$, we have

$$mg(x) \le f(x)g(x) \le Mg(x)$$

for all $x \in [a, b]$. From this and Proposition 2.16 above, we have

$$m\int_{a}^{b}g \le \int_{a}^{b}fg \le M\int_{a}^{b}g.$$

So, if $\int_a^b g = 0$, then the result follows at once.

We may now suppose that $\int_a^b g > 0$. The above inequality shows that

$$m = f(x_1) \le \frac{\int_a^b fg}{\int_a^b g} \le f(x_2) = M.$$

Therefore, there is a point $\xi \in [x_1, x_2] \subseteq [a, b]$ so that the Equation 2.5 holds by using the Intermediate Value Theorem for the function f. Thus, it remains to show that such element ξ can be chosen in (a,b).

Let $a \le x_1 < x_2 \le b$ be as above.

If x_1 and x_2 can be found so that $a < x_1 < x_2 < b$, then the result is proved immediately since $\xi \in [x_1, x_2] \subset (a, b)$ in this case.

Now suppose that x_1 or x_2 does not exist in (a,b), i.e., m=f(a)< f(x) for all $x\in (a,b]$ or f(x) < f(b) = M for all $x \in [a, b)$.

Claim 1: If f(a) < f(x) for all $x \in [a, b]$, then $\int_a^b fg > f(a) \int_a^b g$ and hence, $\xi \in (a, x_2] \subseteq (a, b]$. For showing Claim1, put h(x) := f(x) - f(a) for $x \in [a, b]$. Then h is continuous on [a, b] and h > 0 on (a, b]. This implies that $\int_c^d h > 0$ for any subinterval $[c, d] \subseteq [a, b]$. (Why?)

On the other hand, since $\int_a^b g = \int_a^b g > 0$, there is a partition $P: a = x_0 < \cdots < x_n = b$ so that L(g, P) > 0. This implies that $m_k(g, P) > 0$ for some sub-interval $[x_{k-1}, x_k]$. Therefore, we have

$$\int_{a}^{b} hg \ge \int_{x_{k-1}}^{x_k} hg \ge m_k(g, P) \int_{x_{k-1}}^{x_k} h > 0.$$

Hence, we have $\int_a^b fg > f(a) \int_a^b g$. Claim 1 follows.

Similarly, one can show that if f(x) < f(b) = M for all $x \in [a, b)$, then we have $\int_a^b fg < f(b) \int_a^b g$. This, together with **Claim 1** give us that such ξ can be found in (a, b). The proof is finished.

Now if $f \in R[a, b]$, then by Proposition 2.15, we can define a function $F : [a, b] \to \mathbb{R}$ by

(2.6)
$$F(c) = \begin{cases} 0 & \text{if } c = a \\ \int_a^c f & \text{if } a < c \le b. \end{cases}$$

Theorem 2.19. Fundamental Theorem of Calculus: With the notation as above, assume that $f \in R[a,b]$, we have the following assertion.

- (i) If there is a continuous function F on [a,b] which is differentiable on (a,b) with F'=f, then $\int_a^b f = F(b) - F(a)$. In this case, F is called an indefinite integral of f. (note: if F_1 and F_2 both are the indefinite integrals of f, then by the Mean Value Theorem, we have $F_2 = F_1 + constant$).
- (ii) The function F defined as in Eq. 2.6 above is continuous on [a,b]. Furthermore, if f is continuous on [a,b], then F' exists on (a,b) and F'=f on (a,b).

Proof. For Part (i), notice that for any partition $P: a = x_0 < \cdots < x_n = b$, then by the Mean Value Theorem, for each $[x_{i-1}, x_i]$, there is $\xi_i \in (x_{i-1}, x_i)$ such that $F(x_i) - F(x_{i-1}) = F'(\xi_i) \Delta x_i = f(\xi_i) \Delta x_i$. So, we have

$$L(f, P) \le \sum f(\xi_i) \Delta x_i = \sum F(x_i) - F(x_{i-1}) = F(b) - F(a) \le U(f, P)$$

for all partitions P on [a, b]. This gives

$$\int_{a}^{b} f = \int_{a}^{b} f \le F(b) - F(a) \le \overline{\int_{a}^{b}} f = \int_{a}^{b} f$$

as desired.

For showing the continuity of F in Part (ii), let a < c < x < b. If $|f| \le M$ on [a, b], then we have $|F(x) - F(c)| = |\int_c^x f| \le M(x - c)$. So, $\lim_{x \to c^+} F(x) = F(c)$. Similarly, we also have $\lim_{x \to c^-} F(x) = F(c)$. Thus F is continuous on [a, b].

Now assume that f is continuous on [a, b]. Notice that for any t > 0 with a < c < c + t < b, we have

$$\inf_{x \in [c,c+t]} f(x) \le \frac{1}{t} (F(c+t) - F(c)) = \frac{1}{t} \int_{c}^{c+t} f \le \sup_{x \in [c,c+t]} f(x).$$

Since f is continuous at c, we see that $\lim_{t\to 0+}\frac{1}{t}(F(c+t)-F(c))=f(c)$. Similarly, we have $\lim_{t\to 0-}\frac{1}{t}(F(c+t)-F(c))=f(c)$. So, we have F'(c)=f(c) as desired. The proof is finished.

Definition 2.20. For each function f on [a,b] and a partition $P: a = x_0 < \cdots < x_n = b$, we call $R(f,P,\{\xi_i\}) := \sum_{I=1}^N f(\xi_i) \Delta x_i$, where $\xi_i \in [x_{i-1},x_i]$, the Riemann sum of f over [a,b]. We say that the Riemann sum $R(f,P,\{\xi_i\})$ converges to a number A as $\|P\| \to 0$, write $A = \lim_{\|P\| \to 0} R(f,P,\{\xi_i\})$, if for any $\varepsilon > 0$, there is $\delta > 0$ such that

$$|A - R(f, P, \{\xi_i\})| < \varepsilon$$

whenever $||P|| < \delta$ and for any $\xi_i \in [x_{i-1}, x_i]$.

Proposition 2.21. Let f be a function defined on [a,b]. If the limit $\lim_{\|P\|\to 0} R(f,P,\{\xi_i\}) = A$ exists, then f is automatically bounded.

Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition $P: a = x_0 < \cdots < x_n = b$ such that $|\sum_{k=1}^n f(\xi_k) \Delta x_k| < 1 + |A|$ for any $\xi_k \in [x_{k-1}, x_k]$. Since f is unbounded, we may assume that f is unbounded on $[a, x_1]$. In particular, we choose $\xi_k = x_k$ for k = 2, ..., n. Also, we can choose $\xi_1 \in [a, x_1]$ such that

$$|f(\xi_1)|\Delta x_1 > 1 + |A| + |\sum_{k=2}^n f(x_k)\Delta x_k|.$$

It leads to a contradiction because we have $1 + |A| > |f(\xi_1)| \Delta x_1 - |\sum_{k=2}^n f(x_k) \Delta x_k|$. The proof is finished.

Lemma 2.22. $f \in R[a,b]$ if and only if for any $\varepsilon > 0$, there is $\delta > 0$ such that $U(f,P) - L(f,P) < \varepsilon$ whenever $||P|| < \delta$.

Proof. The converse follows from Theorem 8.3.

Assume that f is integrable over [a, b]. Let $\varepsilon > 0$. Then there is a partition $Q: a = y_0 < ... < y_l = b$ on

[a,b] such that $U(f,Q) - L(f,Q) < \varepsilon$. Now take $0 < \delta < \varepsilon/l$. Suppose that $P: a = x_0 < ... < x_n = b$ with $||P|| < \delta$. Then we have

$$U(f, P) - L(f, P) = I + II$$

where

$$I = \sum_{i:Q \cap [x_{i-1},x_i] = \emptyset} \omega_i(f,P) \Delta x_i;$$

and

$$II = \sum_{i:Q \cap [x_{i-1}, x_i] \neq \emptyset} \omega_i(f, P) \Delta x_i$$

Notice that we have

$$I \le U(f,Q) - L(f,Q) < \varepsilon$$

and

$$II \le (M-m) \sum_{i:Q \cap [x_{i-1},x_i] \ne \emptyset} \Delta x_i \le (M-m) \cdot 2l \cdot \frac{\varepsilon}{l} = 2(M-m)\varepsilon.$$

The proof is finished.

Theorem 2.23. $f \in R[a,b]$ if and only if the Riemann sum $R(f,P,\{\xi_i\})$ is convergent. In this case, $R(f,P,\{\xi_i\})$ converges to $\int_a^b f(x)dx$ as $||P|| \to 0$.

Proof. For the proof (\Rightarrow) : we first note that we always have

$$L(f, P) \le R(f, P, \{\xi_i\}) \le U(f, P)$$

and

$$L(f,P) \le \int_a^b f(x)dx \le U(f,P)$$

for any partition P and $\xi_i \in [x_{i-1}, x_i]$.

Now let $\varepsilon > 0$. Lemma 2.22 gives $\delta > 0$ such that $U(f, P) - L(f, P) < \varepsilon$ as $||P|| < \delta$. Then we have

$$\left| \int_{a}^{b} f(x)dx - R(f, P, \{\xi_i\}) \right| < \varepsilon$$

as $||P|| < \delta$ and $\xi_i \in [x_{i-1}, x_i]$. The necessary part is proved and $R(f, P, \{\xi_i\})$ converges to $\int_a^b f(x)dx$. For (\Leftarrow) : assume that there is a number A such that for any $\varepsilon > 0$, there is $\delta > 0$, we have

$$A - \varepsilon < R(f, P, \{\xi_i\}) < A + \varepsilon$$

for any partition P with $||P|| < \delta$ and $\xi_i \in [x_{i-1}, x_i]$.

Note that f is automatically bounded in this case by Proposition 2.21.

Now fix a partition P with $||P|| < \delta$. Then for each $[x_{i-1}, x_i]$, choose $\xi_i \in [x_{i-1}, x_i]$ such that $M_i(f, P) - \varepsilon \leq f(\xi_i)$. This implies that we have

$$U(f, P) - \varepsilon(b - a) < R(f, P, \{\xi_i\}) < A + \varepsilon.$$

Thus, we have shown that for any $\varepsilon > 0$, there is a partition \mathcal{P} such that

(2.7)
$$\overline{\int_a^b} f(x)dx \le U(f,P) \le A + \varepsilon(1+b-a).$$

By considering -f, note that the Riemann sum of -f will converge to -A. The inequality 8.1 will imply that for any $\varepsilon > 0$, there is a partition P such that

$$A - \varepsilon(1 + b - a) \le \underbrace{\int_a^b f(x) dx} \le \overline{\int_a^b f(x) dx} \le A + \varepsilon(1 + b - a).$$

The proof is complete.

Theorem 2.24. Let $f \in R[c,d]$ and let $\phi : [a,b] \longrightarrow [c,d]$ be a strictly increasing C^1 function with f(a) = c and f(b) = d.

Then $f \circ \phi \in R[a,b]$, moreover, we have

$$\int_{c}^{d} f(x)dx = \int_{a}^{b} f(\phi(t))\phi'(t)dt.$$

Proof. Let $A = \int_c^d f(x) dx$. By using Theorem 2.23, we need to show that for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k| < \varepsilon$$

for all $\xi_k \in [t_{k-1}, t_k]$ whenever $Q : a = t_0 < ... < t_m = b$ with $||Q|| < \delta$.

Now let $\varepsilon > 0$. Then by Lemma 2.22 and Theorem 2.23, there is $\delta_1 > 0$ such that

$$(2.8) |A - \sum f(\eta_k) \triangle x_k| < \varepsilon$$

and

(2.9)
$$\sum \omega_k(f, P) \triangle x_k < \varepsilon$$

for all $\eta_k \in [x_{k-1}, x_k]$ whenever $P : c = x_0 < ... < x_m = d$ with $||P|| < \delta_1$.

Now put $x = \phi(t)$ for $t \in [a, b]$.

Now since ϕ and ϕ' are continuous on [a, b], there is $\delta > 0$ such that $|\phi(t) - \phi(t')| < \delta_1$ and $|\phi'(t) - \phi'(t')| < \varepsilon$ for all t, t' in [a, b] with $|t - t'| < \delta$.

Now let $Q: a = t_0 < ... < t_m = b$ with $||Q|| < \delta$. If we put $x_k = \phi(t_k)$, then $P: c = x_0 < ... < x_m = d$ is a partition on [c, d] with $||P|| < \delta_1$ because ϕ is strictly increasing.

Note that the Mean Value Theorem implies that for each $[t_{k-1}, t_k]$, there is $\xi_k^* \in (t_{k-1}, t_k)$ such that

$$\Delta x_k = \phi(t_k) - \phi(t_{k-1}) = \phi'(\xi_k^*) \Delta t_k.$$

This yields that

$$(2.10) |\Delta x_k - \phi'(\xi_k) \Delta t_k| < \varepsilon \Delta t_k$$

for any $\xi_k \in [t_{k-1}, t_k]$ for all k = 1, ..., m because of the choice of δ .

Now for any $\xi_k \in [t_{k-1}, t_k]$, we have

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k| \leq |A - \sum f(\phi(\xi_k^*))\phi'(\xi_k^*)\triangle t_k|$$

$$+ |\sum f(\phi(\xi_k^*))\phi'(\xi_k^*)\triangle t_k - \sum f(\phi(\xi_k^*))\phi'(\xi_k)\triangle t_k|$$

$$+ |\sum f(\phi(\xi_k^*))\phi'(\xi_k)\triangle t_k - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k|$$

Notice that inequality 8.2 implies that

$$|A - \sum f(\phi(\xi_k^*))\phi'(\xi_k^*)\triangle t_k| = |A - \sum f(\phi(\xi_k^*))\triangle x_k| < \varepsilon.$$

Moreover, since we have $|\phi'(\xi_k^*) - \phi'(\xi_k)| < \varepsilon$ for all k = 1, ..., m, we have

$$|\sum f(\phi(\xi_k^*))\phi'(\xi_k^*)\triangle t_k - \sum f(\phi(\xi_k^*))\phi'(\xi_k)\triangle t_k| \le M(b-a)\varepsilon$$

where $|f(x)| \leq M$ for all $x \in [c, d]$.

On the other hand, by using inequality 8.4 we have

$$|\phi'(\xi_k)\triangle t_k| \le \triangle x_k + \varepsilon \triangle t_k$$

for all k. This, together with inequality 8.3 imply that

$$|\sum f(\phi(\xi_k^*))\phi'(\xi_k)\triangle t_k - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k|$$

$$\leq \sum \omega_k(f,P)|\phi'(\xi_k)\triangle t_k| \ (\because \phi(\xi_k^*),\phi(\xi_k) \in [x_{k-1},x_k])$$

$$\leq \sum \omega_k(f,P)(\triangle x_k + \varepsilon \triangle t_k)$$

$$\leq \varepsilon + 2M(b-a)\varepsilon.$$

Finally by inequality 8.5, we have

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k| \le \varepsilon + M(b-a)\varepsilon + \varepsilon + 2M(b-a)\varepsilon.$$

The proof is complete.

integrals are convergent.

3. Improper Riemann Integrals

Definition 3.1. Let $-\infty < a < b < \infty$.

- (i) Let f be a function defined on $[a,\infty)$. Assume that the restriction $f|_{[a,T]}$ is integrable over [a,T] for all T>a. Put $\int_a^\infty f:=\lim_{T\to\infty}\int_a^T f$ if this limit exists. Similarly, we can define $\int_{-\infty}^b f$ if f is defined on $(-\infty,b]$.
- (ii) If f is defined on (a,b] and $f|_{[c,b]} \in R[c,b]$ for all a < c < b. Put $\int_a^b f := \lim_{c \to a+} \int_c^b f$ if it exists.

Similarly, we can define $\int_a^b f$ if f is defined on [a,b).

(iii) As f is defined on \mathbb{R} , if $\int_0^\infty f$ and $\int_{-\infty}^0 f$ both exist, then we put $\int_{-\infty}^\infty f = \int_{-\infty}^0 f + \int_0^\infty f$. In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the

Example 3.2. Define (formally) an improper integral $\Gamma(s)$ (called the Γ -function) as follows:

$$\Gamma(s) := \int_0^\infty x^{s-1} e^{-x} dx$$

for $s \in \mathbb{R}$. Then $\Gamma(s)$ is convergent if and only if s > 0.

Proof. Put $I(s) := \int_0^1 x^{s-1} e^{-x} dx$ and $II(s) := \int_1^\infty x^{s-1} e^{-x} dx$. We first claim that the integral II(s) is convergent for all $s \in \mathbb{R}$.

In fact, if we fix $s \in \mathbb{R}$, then we have

$$\lim_{x \to \infty} \frac{x^{s-1}}{e^{x/2}} = 0.$$

So there is M>1 such that $\frac{x^{s-1}}{e^{x/2}}\leq 1$ for all $x\geq M$. Thus we have

$$0 \le \int_M^\infty x^{s-1} e^{-x} dx \le \int_M^\infty e^{-x/2} dx < \infty.$$

Therefore we need to show that the integral I(s) is convergent if and only if s > 0. Note that for $0 < \eta < 1$, we have

$$0 \le \int_{\eta}^{1} x^{s-1} e^{-x} dx \le \int_{\eta}^{1} x^{s-1} dx = \begin{cases} \frac{1}{s} (1 - \eta^{s}) & \text{if } s - 1 \ne -1; \\ -\ln \eta & \text{otherwise} \end{cases}$$

Thus the integral $I(s) = \lim_{\eta \to 0+} \int_{\eta}^{1} x^{s-1} e^{-x} dx$ is convergent if s > 0.

Conversely, we also have

$$\int_{\eta}^{1} x^{s-1} e^{-x} dx \ge e^{-1} \int_{\eta}^{1} x^{s-1} dx = \begin{cases} \frac{e^{-1}}{s} (1 - \eta^{s}) & \text{if } s - 1 \ne -1; \\ -e^{-1} \ln \eta & \text{otherwise} \end{cases}$$

So if $s \leq 0$, then $\int_{\eta}^{1} x^{s-1} e^{-x} dx$ is divergent as $\eta \to 0+$. The result follows.

4. Some results of sequences of functions

Proposition 4.1. Let $f_n:(a,b)\longrightarrow \mathbb{R}$ be a sequence of functions. Assume that it satisfies the following conditions:

- (i): $f_n(x)$ point-wise converges to a function f(x) on (a,b);
- (ii) : each f_n is a C^1 function on (a,b);
- (iii): $f'_n \to g$ uniformly on (a,b).

Then f is a C^1 -function on (a,b) with f'=g.

Proof. Fix $c \in (a,b)$. Then for each x with c < x < b (similarly, we can prove it in the same way as a < x < c), the Fundamental Theorem of Calculus implies that

$$f_n(x) = \int_c^x f'(t)dt + f_n(c).$$

Since $f'_n \to g$ uniformly on (a, b), we see that

$$\int_{a}^{x} f'_{n}(t)dt \longrightarrow \int_{a}^{x} g(t)dt.$$

This gives

$$f(x) = \int_{a}^{x} g(t)dt + f(c).$$

for all $x \in (c,b)$. Similarly, we have $f(x) = \int_c^x g(t)dt + f(c)$ for all $x \in (a,b)$. On the other hand, g is continuous on (a,b) since each f'_n is continuous and $f'_n \to g$ uniformly on (a,b). Equation 9.1 will tell us that f' exists and f'=g on (a,b). The proof is finished.

Proposition 4.2. Let (f_n) be a sequence of differentiable functions defined on (a,b). Assume that

- (i): there is a point $c \in (a, b)$ such that $\lim f_n(c)$ exists;
- (ii): f'_n converges uniformly to a function g on (a,b).

Then

- (a): f_n converges uniformly to a function f on (a,b);
- (b): f is differentiable on (a,b) and f'=g.

Proof. For Part (a), we will make use the Cauchy theorem.

Let $\varepsilon > 0$. Then by the assumptions (i) and (ii), there is a positive integer N such that

$$|f_m(c) - f_n(c)| < \varepsilon$$
 and $|f'_m(x) - f'_n(x)| < \varepsilon$

for all $m, n \ge N$ and for all $x \in (a, b)$. Now fix c < x < b and $m, n \ge N$. To apply the Mean Value Theorem for $f_m - f_n$ on (c, x), then there is a point ξ between c and x such that

$$(4.2) f_m(x) - f_n(x) = f_m(c) - f_n(c) + (f'_m(\xi) - f'_n(\xi))(x - c).$$

This implies that

$$|f_m(x) - f_n(x)| \le |f_m(c) - f_n(c)| + |f'_m(\xi) - f'_n(\xi)| |x - c| < \varepsilon + (b - a)\varepsilon$$

for all $m, n \ge N$ and for all $x \in (c, b)$. Similarly, when $x \in (a, c)$, we also have

$$|f_m(x) - f_n(x)| < \varepsilon + (b - a)\varepsilon.$$

So Part (a) follows.

Let f be the uniform limit of (f_n) on (a,b)

For Part (b), we fix $u \in (a, b)$. We are going to show

$$\lim_{x \to u} \frac{f(x) - f(u)}{x - u} = g(u).$$

Let $\varepsilon > 0$. Since (f'_n) is uniformly convergent on (a, b), there is $N \in \mathbb{N}$ such that

$$(4.3) |f_m'(x) - f_n'(x)| < \varepsilon$$

for all $m, n \ge N$ and for all $x \in (a, b)$

Note that for all $m \geq N$ and $x \in (a, b) \setminus \{u\}$, applying the Mean value Theorem for $f_m - f_N$ as before, we have

$$\frac{f_m(x) - f_N(x)}{x - u} = \frac{f_m(u) - f_N(u)}{x - u} + (f'_m(\xi) - f'_N(\xi))$$

for some ξ between u and x

So Eq.9.3 implies that

$$\left|\frac{f_m(x) - f_m(u)}{x - u} - \frac{f_N(x) - f_N(u)}{x - u}\right| \le \varepsilon$$

for all $m \geq N$ and for all $x \in (a, b)$ with $x \neq u$.

Taking $m \to \infty$ in Eq.9.4, we have

$$\left|\frac{f(x) - f(u)}{x - u} - \frac{f_N(x) - f_N(u)}{x - u}\right| \le \varepsilon.$$

Hence we have

$$\left| \frac{f(x) - f(u)}{x - u} - f'_{N}(u) \right| \le \left| \frac{f(x) - f(u)}{x - c} - \frac{f_{N}(x) - f_{N}(u)}{x - u} \right| + \left| \frac{f_{N}(x) - f_{N}(u)}{x - u} - f'_{N}(u) \right|$$

$$\le \varepsilon + \left| \frac{f_{N}(x) - f_{N}(u)}{x - u} - f'_{N}(u) \right|.$$

So if we can take $0 < \delta$ such that $\left| \frac{f_N(x) - f_N(u)}{x - u} - f_N'(u) \right| < \varepsilon$ for $0 < |x - u| < \delta$, then we have

$$\left|\frac{f(x) - f(u)}{x - u} - f_N'(u)\right| \le 2\varepsilon$$

for $0 < |x - u| < \delta$. On the other hand, by the choice of N, we have $|f'_m(y) - f'_N(y)| < \varepsilon$ for all $y \in (a, b)$ and $m \ge N$. So we have $|g(u) - f'_N(u)| \le \varepsilon$. This together with Eq.9.5 give

$$\left|\frac{f(x) - f(u)}{x - u} - g(u)\right| \le 3\varepsilon$$

as $0 < |x - u| < \delta$, that is we have

$$\lim_{x \to u} \frac{f(x) - f(u)}{x - u} = g(u).$$

22 CHI-WAI LEUNG

The proof is finished.

Remark 4.3. The uniform convergence assumption of (f'_n) in the Propositions above is essential.

Example 4.4. Let $f_n(x) := \frac{x}{1+n^2x^2}$ for $x \in (-1,1)$. Then we have

$$g(x) := \lim_{n} f'_n(x) := \lim_{n} \frac{1 - n^2 x^2}{(1 + n^2 x^2)^2} = \begin{cases} 0 & \text{if } x \neq 0; \\ 1 & \text{if } x = 0. \end{cases}$$

On the other hand, $f_n \to 0$ uniformly on (-1,1). In fact, if $f'_n(1/n) = 0$ for all n = 1, 2, ..., then f_n attains the maximal value $f_n(1/n) = \frac{1}{2n}$ at x = 1/n for each n = 1, ... and hence, $f_n \to 0$ uniformly on (-1,1).

So Propositions 9.1 and 9.2 does not hold. Note that (f'_n) does not converge uniformly to g on (-1,1).

Proposition 4.5. (Dini's Theorem): Let A be a compact subset of \mathbb{R} and $f_n : A \to \mathbb{R}$ be a sequence of continuous functions defined on A. Suppose that

- (i) for each $x \in A$, we have $f_n(x) \leq f_{n+1}(x)$ for all n = 1, 2...;
- (ii) the pointwise limit $f(x) := \lim_n f_n(x)$ exists for all $x \in A$;
- (iii) f is continuous on A.

Then f_n converges to f uniformly on A.

Proof. Let $g_n := f - f_n$ defined on A. Then each g_n is continuous and $g_n(x) \downarrow 0$ pointwise on A. It suffices to show that g_n converges to 0 uniformly on A.

Method I: Suppose not. Then there is $\varepsilon > 0$ such that for all positive integer N, we have

$$(4.6) g_n(x_n) \ge \varepsilon.$$

for some $n \geq N$ and some $x_n \in A$. From this, by passing to a subsequence we may assume that $g_n(x_n) \geq \varepsilon$ for all n = 1, 2, Then by using the compactness of A, there is a convergent subsequence (x_{n_k}) of (x_n) in A. Let $z := \lim_k x_{n_k} \in A$. Since $g_{n_k}(z) \downarrow 0$ as $k \to \infty$. So, there is a positive integer K such that $0 \leq g_{n_K}(z) < \varepsilon/2$. Since g_{n_K} is continuous at z and $\lim_i x_{n_i} = z$, we have $\lim_i g_{n_K}(x_{n_i}) = g_{n_K}(z)$. So, we can choose i large enough such that i > K

$$g_{n_i}(x_{n_i}) \leq g_{n_K}(x_{n_i}) < \varepsilon/2$$

because $g_m(x_{n_i}) \downarrow 0$ as $m \to \infty$. This contradicts to the Inequality 4.6.

Method II: Let $\varepsilon > 0$. Fix $x \in A$. Since $g_n(x) \downarrow 0$, there is $N(x) \in \mathbb{N}$ such that $0 \leq g_n(x) < \varepsilon$ for all $n \geq N(x)$. Since $g_{N(x)}$ is continuous, there is $\delta(x) > 0$ such that $g_{N(x)}(y) < \varepsilon$ for all $y \in A$ with $|x-y| < \delta(x)$. If we put $J_x := (x-\delta(x), x+\delta(x))$, then $A \subseteq \bigcup_{x \in A} J_x$. Then by the compactness of A, there are finitely many $x_1, ..., x_m$ in A such that $A \subseteq J_{x_1} \cup \cdots \cup J_{x_m}$. Put $N := \max(N(x_1), ..., N(x_m))$. Now if $y \in A$, then $y \in J(x_i)$ for some $1 \leq i \leq m$. This implies that

$$g_n(y) \le g_{N(x_i)}(y) < \varepsilon$$

for all $n \geq N \geq N(x_i)$.

5. Absolutely convergent series

Throughout this section, let (a_n) be a sequence of complex numbers.

Definition 5.1. We say that a series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if $\sum_{n=1}^{\infty} |a_n| < \infty$.

Also a convergent series $\sum_{n=1}^{\infty} a_n$ is said to be conditionally convergent if it is not absolute convergent.

Example 5.2. Important Example : The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\alpha}}$ is conditionally convergent when $0 < \alpha < 1$.

This example shows us that a convergent improper integral may fail to the absolute convergence or square integrable property.

For instance, if we consider the function $f:[1,\infty)\longrightarrow \mathbb{R}$ given by

$$f(x) = \frac{(-1)^{n+1}}{n^{\alpha}}$$
 if $n \le x < n+1$.

If $\alpha = 1/2$, then $\int_1^\infty f(x)dx$ is convergent but it is neither absolutely convergent nor square integrable.

Notation 5.3. Let $\sigma: \{1,2...\} \longrightarrow \{1,2...\}$ be a bijection. A formal series $\sum_{n=1}^{\infty} a_{\sigma(n)}$ is called an rearrangement of $\sum_{n=1}^{\infty} a_n$.

Example 5.4. In this example, we are going to show that there is an rearrangement of the series $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ is divergent although the original series is convergent. In fact, it is conditionally convergent.

We first notice that the series $\sum_{i} \frac{1}{2i-1}$ diverges to infinity. Thus for each M > 0, there is a positive integer N such that

$$\sum_{i=1}^{n} \frac{1}{2i-1} \ge M \qquad \cdots (*)$$

for all $n \geq N$. Then there is $N_1 \in \mathbb{N}$ such that

$$\sum_{i=1}^{N_1} \frac{1}{2i-1} - \frac{1}{2} > 1.$$

By using (*) again, there is a positive integer N_2 with $N_1 < N_2$ such that

$$\sum_{i=1}^{N_1} \frac{1}{2i-1} - \frac{1}{2} + \sum_{N_1 < i \le N_2} \frac{1}{2i-1} - \frac{1}{4} > 2.$$

To repeat the same procedure, we can find a positive integers subsequence (N_k) such that

$$\sum_{i=1}^{N_1} \frac{1}{2i-1} - \frac{1}{2} + \sum_{N_1 < i \le N_2} \frac{1}{2i-1} - \frac{1}{4} + \dots - \sum_{N_{k-1} < i \le N_k} \frac{1}{2i-1} - \frac{1}{2k} > k$$

for all positive integers k. So if we let $a_n = \frac{(-1)^{n+1}}{n}$, then one can find a bijection $\sigma: \mathbb{N} \to \mathbb{N}$ such that the series $\sum_{i=1}^{\infty} a_{\sigma(i)}$ is an rearrangement of the series $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ and diverges to infinity. The proof is finished.

Theorem 5.5. Let $\sum_{n=0}^{\infty} a_n$ be an absolutely convergent series. Then for any rearrangement $\sum_{n=0}^{\infty} a_{\sigma(n)}$

is also absolutely convergent. Moreover, we have $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_{\sigma(n)}$.

Proof. Let $\sigma: \{1, 2...\} \longrightarrow \{1, 2...\}$ be a bijection as before.

We first claim that $\sum_{n} a_{\sigma(n)}$ is also absolutely convergent. Let $\varepsilon > 0$. Since $\sum_{n} |a_{n}| < \infty$, there is a positive integer N such that

$$|a_{N+1}| + \cdots + |a_{N+p}| < \varepsilon$$
 ·······(*)

for all p=1,2... Notice that since σ is a bijection, we can find a positive integer M such that $M > \max\{j : 1 \le \sigma(j) \le N\}$. Then $\sigma(i) \ge N$ if $i \ge M$. This together with (*) imply that if $i \ge M$ and $p \in \mathbb{N}$, we have

$$|a_{\sigma(i+1)}| + \cdots + |a_{\sigma(i+p)}| < \varepsilon.$$

Thus the series $\sum_{n} a_{\sigma(n)}$ is absolutely convergent by the Cauchy criteria.

Finally we claim that $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\sigma(n)}$. Put $l = \sum_{n=1}^{\infty} a_n$ and $l' = \sum_{n=1}^{\infty} a_{\sigma(n)}$. Now let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that

$$|l - \sum_{n=1}^{N} a_n| < \varepsilon$$
 and $|a_{N+1}| + \cdots + |a_{N+p}| < \varepsilon \cdots \cdots (**)$

for all $p \in \mathbb{N}$. Now choose a positive integer M large enough so that $\{1,...,N\} \subseteq \{\sigma(1),...,\sigma(M)\}$ and $|l' - \sum_{i=1}^{m} a_{\sigma(i)}| < \varepsilon$. Notice that since we have $\{1, ..., N\} \subseteq \{\sigma(1), ..., \sigma(M)\}$, the condition (**) gives

$$\left|\sum_{n=1}^{N} a_n - \sum_{i=1}^{M} a_{\sigma(i)}\right| \le \sum_{N < i < \infty} |a_i| \le \varepsilon.$$

We can now conclude that

$$|l - l'| \le |l - \sum_{n=1}^{N} a_n| + |\sum_{n=1}^{N} a_n - \sum_{i=1}^{M} a_{\sigma(i)}| + |\sum_{i=1}^{M} a_{\sigma(i)} - l'| \le 3\varepsilon.$$

The proof is complete.

6. Power series

Throughout this section, let

$$f(x) = \sum_{i=0}^{\infty} a_i x^i \qquad \cdots (*)$$

denote a formal power series, where $a_i \in \mathbb{R}$.

Lemma 6.1. Suppose that there is $c \in \mathbb{R}$ with $c \neq 0$ such that f(c) is convergent. Then

- (i): f(x) is absolutely convergent for all x with |x| < |c|.
- (ii): f converges uniformly on $[-\eta, \eta]$ for any $0 < \eta < |c|$.

Proof. For Part (i), note that since f(c) is convergent, then $\lim a_n c^n = 0$. So there is a positive integer N such that $|a_n c^n| \le 1$ for all $n \ge N$. Now if we fix |x| < |c|, then |x/c| < 1. Therefore, we have

$$\sum_{n=1}^{\infty} |a_n||x^n| \le \sum_{n=1}^{N-1} |a_n||x^n| + \sum_{n>N} |a_nc^n||x/c|^n \le \sum_{n=1}^{N-1} |a_n||x^n| + \sum_{n>N} |x/c|^n < \infty.$$

So Part (i) follows.

Now for Part (ii), if we fix $0 < \eta < |c|$, then $|a_n x^n| \le |a_n \eta|^n$ for all n and for all $x \in [-\eta, \eta]$. On the other hand, we have $\sum_n |a_n \eta^n| < \infty$ by Part (i). So f converges uniformly on $[-\eta, \eta]$ by the M-test. The proof is finished.

Remark 6.2. In Lemma 11.9(ii), notice that if f(c) is convergent, it does not imply f converges uniformly on [-c, c] in general.

For example, $f(x) := 1 + \sum_{n=1}^{\infty} \frac{x^n}{n}$. Then f(-1) is convergent but f(1) is divergent.

Definition 6.3. Call the set dom $f := \{x \in \mathbb{R} : f(c) \text{ is convergent } \}$ the domain of convergence of f for convenience. Let $0 \le r := \sup\{|c| : c \in dom \ f\} \le \infty$. Then r is called the radius of convergence of f.

Remark 6.4. Notice that by Lemma 11.9, then the domain of convergence of f must be the interval with the end points $\pm r$ if $0 < r < \infty$.

When r = 0, then dom $f = \{0\}$.

Finally, if $r = \infty$, then dom $f = \mathbb{R}$.

Example 6.5. If $f(x) = \sum_{n=0}^{\infty} n! x^n$, then r = (0). In fact, notice that if we fix a non-zero number x and consider $\lim_{n \to \infty} |(n+1)! x^{n+1}| / |n! x^n| = \infty$, then by the ratio test f(x) must be divergent for any $x \neq 0$. So r = 0 and dom f = (0).

Example 6.6. Let $f(x) = 1 + \sum_{n=1}^{\infty} x^n/n^n$. Notice that we have $\lim_n |x^n/n^n|^{1/n} = 0$ for all x. So the root test implies that f(x) is convergent for all x and then $r = \infty$ and dom $f = \mathbb{R}$.

Example 6.7. Let $f(x) = 1 + \sum_{n=1}^{\infty} x^n/n$. Then $\lim_n |x^{n+1}/(n+1)| \cdot |n/x^n| = |x|$ for all $x \neq 0$. So by the ration test, we see that if |x| < 1, then f(x) is convergent and if |x| > 1, then f(x) is divergent. So r = 1. Also, it is known that f(1) is divergent but f(-1) is divergent. Therefore, we have dom f = [-1, 1).

Example 6.8. Let $f(x) = \sum x^n/n^2$. Then by using the same argument of Example 11.7, we have r = 1. On the other hand, it is known that $f(\pm 1)$ both are convergent. So dom f = [-1, 1].

Lemma 6.9. With the notation as above, if r > 0, then f converges uniformly on $(-\eta, \eta)$ for any $0 < \eta < r$.

Proof. It follows from Lemma 11.1 at once.

Remark 6.10. Note that the Example 11.7 shows us that f may not converge uniformly on (-r,r). In fact let f be defined as in Example 11.7. Then f does not converges on (-1,1). In fact, if we let $s_n(x) = \sum_{k=0}^{\infty} a_k x^k$, then for any positive integer n and 0 < x < 1, we have

$$|s_{2n}(x) - s_n(x)| = \frac{x^{n+1}}{n+1} + \dots + \frac{x^n}{2n}.$$

From this we see that if n is fixed, then $|s_{2n}(x) - s_n(x)| \to 1/2$ as $x \to 1-$. So for each n, we can find 0 < x < 1 such that $|s_{2n}(x) - s_n(x)| > \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$. Thus f does not converges uniformly on (-1,1) by the Cauchy Theorem.

Proposition 6.11. With the notation as above, let $\ell = \overline{\lim} |a_n|^{1/n}$ or $\lim \frac{|a_{n+1}|}{|a_n|}$ provided it exists. Then

$$r = \begin{cases} \frac{1}{\ell} & \text{if } 0 < \ell < \infty; \\ 0 & \text{if } \ell = \infty; \\ \infty & \text{if } \ell = 0. \end{cases}$$

Proposition 6.12. With the notation as above if $0 < r \le \infty$, then $f \in C^{\infty}(-r,r)$. Moreover, the k-derivatives $f^{(k)}(x) = \sum_{n \ge k} a_k n(n-1)(n-2) \cdots (n-k+1) x^{n-k}$ for all $x \in (-r,r)$.

Proof. Fix $c \in (-r, r)$. By Lemma 11.9, one can choose $0 < \eta < r$ such that $c \in (-\eta, \eta)$ and f converges uniformly on $(-\eta, \eta)$.

It needs to show that the k-derivatives $f^{(k)}(c)$ exists for all $k \geq 0$. Consider the case k = 1 first. If we consider the series $\sum_{n=0}^{\infty} (a_n x^n)' = \sum_{n=1}^{\infty} n a_n x^{n-1}$, then it also has the same radius r because $\lim_n |na_n|^{1/n} = \lim_n |a_n|^{1/n}$. This implies that the series $\sum_{n=1}^{\infty} n a_n x^{n-1}$ converges uniformly on $(-\eta, \eta)$. Therefore, the restriction $f|(-\eta, \eta)$ is differentiable. In particular, f'(c) exists and $f'(c) = \sum_{n=1}^{\infty} n a_n c^{n-1}$.

So the result can be shown inductively on k.

Proposition 6.13. With the notation as above, suppose that r > 0. Then we have

$$\int_0^x f(t)dt = \sum_{n=0}^{\infty} \int_0^x a_n t^n dt = \sum_{n=0}^{\infty} \frac{1}{n+1} a_n x^{n+1}$$

for all $x \in (-r, r)$.

Proof. Fix 0 < x < r. Then by Lemma 11.9 f converges uniformly on [0, x]. Since each term $a_n t^n$ is continuous, the result follows.

Theorem 6.14. (Abel): With the notation as above, suppose that 0 < r and f(r) (or f(-r)) exists. Then f is continuous at x = r (resp. x = -r), that is $\lim_{x \to r} f(x) = f(r)$.

Proof. Note that by considering f(-x), it suffices to show that the case x = r holds. Assume r = 1.

Notice that if f converges uniformly on [0,1], then f is continuous at x=1 as desired. Let $\varepsilon > 0$. Since f(1) is convergent, then there is a positive integer such that

$$|a_{n+1} + \cdots + a_{n+n}| < \varepsilon$$

for $n \geq N$ and for all p = 1, 2... Note that for $n \geq N$; p = 1, 2... and $x \in [0, 1]$, we have

$$s_{n+p}(x) - s_n(x) = a_{n+1}x^{n+1} + a_{n+2}x^{n+1} + a_{n+3}x^{n+1} + \dots + a_{n+p}x^{n+1}$$

$$+ a_{n+2}(x^{n+2} - x^{n+1}) + a_{n+3}(x^{n+2} - x^{n+1}) + \dots + a_{n+p}(x^{n+2} - x^{n+1})$$

$$+ a_{n+3}(x^{n+3} - x^{n+2}) + \dots + a_{n+p}(x^{n+3} - x^{n+2})$$

$$\vdots$$

$$+ a_{n+p}(x^{n+p} - x^{n+p-1}).$$
(6.1)

Since $x \in [0,1], |x^{n+k+1} - x^{n+k}| = x^{n+k} - x^{n+k+1}$. So the Eq.11.1 implies that

$$|s_{n+p}(x)-s_n(x)| \le \varepsilon(x_{n+1}+(x^{n+1}-x^{n+2})+(x^{n+2}-x^{n+3})+\cdots+(x^{n+p-1}-x^{n+p})) = \varepsilon(2x^{n+1}-x^{n+p}) \le 2\varepsilon.$$

So f converges uniformly on [0,1] as desired.

Finally for the general case, we consider $g(x) := f(rx) = \sum_n a_n r^n x^n$. Note that $\lim_n |a_n r^n|^{1/n} = 1$ and g(1) = f(r). Then by the case above, we have shown that

$$f(r) = g(1) = \lim_{x \to 1-} g(x) = \lim_{x \to r-} f(x).$$

The proof is finished.

Remark 6.15. In Remark 11.10, we have seen that f may not converges uniformly on (-r,r). However, in the proof of Abel's Theorem above, we have shown that if $f(\pm r)$ both exist, then f converges uniformly on [-r,r] in this case.

7. Real analytic functions

Proposition 7.1. Let $f \in C^{\infty}(a,b)$ and $c \in (a,b)$. Then for any $x \in (a,b) \setminus \{c\}$ and for any $n \in \mathbb{N}$, there is $\xi = \xi(x,n)$ between c and x such that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + \int_{c}^{x} \frac{f^{(n+1)}(t)}{n!} (x - t)^{n} dt$$

Call $\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!} (x-c)^k$ (may not be convergent) the Taylor series of f at c.

Proof. It is easy to prove by induction on n and the integration by part.

Definition 7.2. A real-valued function f defined on (a,b) is said to be real analytic if for each $c \in (a,b)$, one can find $\delta > 0$ and a power series $\sum_{k=0}^{\infty} a_k(x-c)^k$ such that

$$f(x) = \sum_{k=0}^{\infty} a_k (x - c)^k \qquad \cdots (*)$$

for all $x \in (c - \delta, c + \delta) \subseteq (a, b)$.

Remark 7.3.

(i): Concerning about the definition of a real analytic function f, the expression (*) above is uniquely determined by f, that is, each coefficient a_k 's is uniquely determined by f. In fact, by Proposition 11.12, we have seen that $f \in C^{\infty}(a,b)$ and

$$a_k = \frac{f^{(k)}(c)}{k!} \qquad \cdots \cdots (**)$$

for all k = 0, 1, 2,

(ii) : Although every real analytic function is C^{∞} , the following example shows that the converse does not hold.

Define a function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}$$

One can directly check that $f \in C^{\infty}(\mathbb{R})$ and $f^{(k)}(0) = 0$ for all k = 0, 1, 2... So if f is real analytic, then there is $\delta > 0$ such that $a_k = 0$ for all k by the Eq.(**) above and hence $f(x) \equiv 0$ for all $x \in (-\delta, \delta)$. It is absurd.

(iii) Interesting Fact: Let D be an open disc in \mathbb{C} . A complex analytic function f on D is similarly defined as in the real case. However, we always have: f is complex analytic if and only if it is C^{∞} .

Proposition 7.4. Suppose that $f(x) := \sum_{k=0}^{\infty} a_k (x-c)^k$ is convergent on some open interval I centered at c, that is I = (c-r, c+r) for some r > 0. Then f is analytic on I.

Proof. We first note that $f \in C^{\infty}(I)$. By considering the translation x - c, we may assume that c = 0. Now fix $z \in I$. Now choose $\delta > 0$ such that $(z - \delta, z + \delta) \subseteq I$. We are going to show that

$$f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!} (x-z)^j.$$

for all $x \in (z - \delta, z + \delta)$.

Notice that f(x) is absolutely convergent on I. This implies that

$$f(x) = \sum_{k=0}^{\infty} a_k (x - z + z)^k$$

$$= \sum_{k=0}^{\infty} a_k \sum_{j=0}^{k} \frac{k(k-1) \cdots (k-j+1)}{j!} (x-z)^j z^{k-j}$$

$$= \sum_{j=0}^{\infty} \left(\sum_{k \ge j} k(k-1) \cdots (k-j+1) a_k z^{k-j} \right) \frac{(x-z)^j}{j!}$$

$$= \sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!} (x-z)^j$$

for all $x \in (z - \delta, z + \delta)$. The proof is finished.

Example 7.5. Let $\alpha \in \mathbb{R}$. Recall that $(1+x)^{\alpha}$ is defined by $e^{\alpha \ln(1+x)}$ for x > -1. Now for each $k \in \mathbb{N}$, put

$$\begin{pmatrix} \alpha \\ k \end{pmatrix} = \begin{cases} \frac{\alpha(\alpha-1)\cdots\cdots(\alpha-k+1)}{k!} & \text{if } k \neq 0; \\ 1 & \text{if } x = 0. \end{cases}$$

Then

$$f(x) := (1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k$$

whenever |x| < 1.

Consequently, f(x) is analytic on (-1,1).

Proof. Notice that $f^{(k)}(x) = \alpha(\alpha - 1) \cdot \cdots \cdot (\alpha - k + 1)(1 + x)^{\alpha - k}$ for |x| < 1. Fix |x| < 1. Then by Proposition 12.1, for each positive integer n we have

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^k + \int_0^x \frac{f^{(n)}(t)}{(n-1)!} (x-t)^{n-1} dt$$

So by the mean value theorem for integrals, for each positive integer n, there is ξ_n between 0 and x such that

$$\int_0^x \frac{f^{(n)}(t)}{(n-1)!} (x-t)^{n-1} dt = \frac{f^{(n)}(\xi_n)}{(n-1)!} (x-\xi_n)^{n-1} x$$

Now write $\xi_n = \eta_n x$ for some $0 < \eta_n < 1$ and $R_n(x) := \frac{f^{(n)}(\xi_n)}{(n-1)!} (x - \xi_n)^{n-1} x$. Then

$$R_n(x) = (\alpha - n + 1) \binom{\alpha}{n - 1} (1 + \eta_n x)^{\alpha - n} (x - \eta_n x)^{n - 1} x = (\alpha - n + 1) \binom{\alpha}{n - 1} x^n (1 + \eta_n x)^{\alpha - 1} (\frac{1 - \eta_n}{1 + \eta_n x})^{n - 1}.$$

We need to show that $R_n(x) \to 0$ as $n \to \infty$, that is the Taylor series of f centered at 0 converges to f. By the Ratio Test, it is easy to see that the series $\sum_{k=0}^{\infty} (\alpha - k + 1) {\alpha \choose k} y^k$ is convergent as |y| < 1.

This tells us that $\lim_{n} |(\alpha - n + 1) {\alpha \choose n} x^n| = 0.$

On the other hand, note that we always have $0 < 1 - \eta_n < 1 + \eta_n x$ for all n because x > -1. Thus, we can now conclude that $R_n(x) \to 0$ as |x| < 1. The proof is finished. Finally the last assertion follows from Proposition 12.4 at once. The proof is complete.